Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials

Abstract

Many high-performance materials and novel devices consist of multiple components and are naturally or intentionally nano-structured for optimal properties and performance. To understand their structure–property relationships fully, quantitative compositional analysis at length scales below 100 nm is required, a need that is often uniquely addressed using soft X-ray microscopy. Similarly, the interaction of X-rays with magnetic materials provides unique element-specific contrast that allows the determination of magnetic properties in multi-element antiferromagnetic and ferromagnetic materials. Pump–probe-type experiments can even investigate magnetic domain dynamics. Here we review and exemplify the ability of soft X-ray micro-scopy to provide information that is otherwise inaccessible, and discuss a perspective on future developments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of compositional, linear and circular magnetic dichroic contrast mechanisms using NEXAFS spectroscopy.
Figure 2: NEXAFS imaging of latex particles and microballoons dispersed in water.
Figure 3: NEXAFS compositional mapping applied to two-component organic electronic devices that show macroscopic phase separation.
Figure 4: NEXAFS orientational maps for spider silk in the dry and wet states.
Figure 5: Domain structures in a platinum–cobalt bilayer on an antiferromagnetic LaFeO3 substrate observed in a PEEM.
Figure 6: Time-resolved imaging of spin-transfer switching69,70.
Figure 7: Sketch of switching of the vortex core polarization by an in-plane magnetic field pulse of 1.5 mT as revealed by time-resolved X-ray microscopy78.
Figure 8: Illustration of X-ray ptychography.

Similar content being viewed by others

References

  1. Stöhr, J. NEXAFS Spectroscopy (Springer, 1992).

    Google Scholar 

  2. Stöhr, J. & Siegmann, H. C. Magnetism (Springer, 2006).

    Google Scholar 

  3. Ade, H. et al. Chemical contrast in X-ray microscopy and spatially resolved XANES spectroscopy of organic specimens. Science 258, 972–975 (1992).

    CAS  Google Scholar 

  4. Ade, H. & Hsiao, B. X-ray linear dichroism microscopy. Science 262, 1427–1429 (1993).

    CAS  Google Scholar 

  5. Stöhr, J. et al. Element-specific magnetic microscopy with circularly polarized X-rays. Science 259, 658–661 (1993).

    Google Scholar 

  6. Stoll, H. et al. High-resolution imaging of fast magnetization dynamics in magnetic nanostructures. Appl. Phys. Lett. 84, 3328–3330 (2004).

    CAS  Google Scholar 

  7. Vogel, J. et al. Time-resolved magnetic domain imaging by X-ray photoemission electron microscopy. Appl. Phys. Lett. 82, 2299–2301 (2003).

    CAS  Google Scholar 

  8. Schmahl, G., Rudolph, D., Niemann, B. & Christ, O. Zone-plate X-ray microscopy. Q. Rev. Biophys. 13, 297–315 (1980).

    CAS  Google Scholar 

  9. Kirz, J., Jacobsen, C. & Howells, M. Soft X-ray microscopes and their biological applications. Q. Rev. Biophys. 28, 33–130 (1995).

    CAS  Google Scholar 

  10. Schneider, G. Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast. Ultramicroscopy 75, 85–104 (1998).

    CAS  Google Scholar 

  11. Ade, H. & Hitchcock, A. P. NEXAFS microscopy, resonant scattering and resonant reflectivity: composition and orientation probed in real and reciprocal space. Polymer 49, 643–675 (2008).

    CAS  Google Scholar 

  12. Bluhm, H. et al. Soft X-ray microscopy and spectroscopy at the molecular environmental science beamline at the Advanced Light Source. J. Electron Spectrosc. Relat. Phenom. 150, 86–104 (2006).

    CAS  Google Scholar 

  13. Birrell, G. B., Hedberg, K. K., Habliston, D. L. & Griffith, O. H. Biological applications of photoelectron imaging: A practical perspective. Ultramicroscopy 36, 235–251 (1991).

    CAS  Google Scholar 

  14. Griffith, O. H. & Rempfer, G. F. Photoelectron imaging in cell biology. Annu. Rev. Biophys. Biophys. Chem. 14, 113–130 (1985).

    CAS  Google Scholar 

  15. Tonner, B. & Harp, G. R. Photoelectron microscopy with synchrotron radiation. Rev. Sci. Instrum. 59, 853–858 (1988).

    CAS  Google Scholar 

  16. Rightor, E. G. et al. Spectromicroscopy of poly(ethylene terephthalate): Comparison of spectra and radiation damage rates in X-ray absorption and electron energy loss. J. Phys. Chem. B 101, 1950–1960 (1997).

    CAS  Google Scholar 

  17. Dhez, O., Ade, H. & Urquhart, S. Calibrated NEXAFS spectra of some common polymers. J. Electron Spectrosc. Relat. Phenom. 128, 85–96 (2003).

    CAS  Google Scholar 

  18. Urquhart, S. G. & Ade, H. Trends in the carbonyl core (C 1s, O 1s) → π*C=O transition in the near edge X-ray absorption fine structure spectra of organic molecules. J. Phys. Chem. B 106, 8531–8538 (2002).

    CAS  Google Scholar 

  19. Smith, A. P. & Ade, H. Quantitative orientational analysis of a polymeric material (Kevlar fiber) with X-ray microspectroscopy. Appl. Phys. Lett. 69, 3833–3835 (1996).

    CAS  Google Scholar 

  20. Kilcoyne, A. L. D. et al. Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source. J. Synchrotron Radiat. 10, 125–136 (2003).

    CAS  Google Scholar 

  21. Jacobsen, C., Wirick, S., Flynn, G. & Zimba, C. Soft X-ray spectroscopy from image sequences with sub-100 nm spatial resolution. J. Microsc. 197, 173–184 (2000).

    CAS  Google Scholar 

  22. Ade, H. et al. X-ray spectromicroscopy with a zone plate generated microprobe. Appl. Phys. Lett. 56, 1841–1843 (1990).

    CAS  Google Scholar 

  23. Gunther, S., Kaulich, B., Gregoratti, L. & Kiskinova, M. Photoelectron microscopy and applications in surface and materials science. Prog. Surf. Sci. 70, 187–260 (2002).

    CAS  Google Scholar 

  24. Locatelli, A., Aballe, L., Mentes, T. O., Kiskinova, M. & Bauer, E. Photoemission electron microscopy with chemical sensitivity: SPELEEM methods and applications. Surf. Interface Anal. 38, 1554–1557 (2006).

    CAS  Google Scholar 

  25. Tzvetkov, G. et al. In situ characterization of gas-filled microballoons using soft X-ray microspectroscopy. Soft Matter 4, 510–514 (2008).

    CAS  Google Scholar 

  26. Iwata, N. et al. Chemical component mapping of pulverized toner by scanning transmission X-ray microscopy. Micron 37, 290–295 (2006).

    CAS  Google Scholar 

  27. Mobus, G. & Inkson, B. J. Three-dimensional reconstruction of buried nanoparticles by element-sensitive tomography based on inelastically scattered electrons. Appl. Phys. Lett. 79, 1369–1371 (2001).

    CAS  Google Scholar 

  28. Johansson, G. A., Tyliszczak, T., Mitchell, G. E., Keefe, M. H. & Hitchcock, A. P. Three-dimensional chemical mapping by scanning transmission X-ray spectromicroscopy. J. Synchrotron Radiat. 14, 395–402 (2007).

    CAS  Google Scholar 

  29. Weiss, D. et al. Computed tomography of cryogenic biological specimens based on X-ray microscopic images. Ultramicroscopy 84, 185–197 (2000).

    CAS  Google Scholar 

  30. Beetz, T. & Jacobsen, C. Soft X-ray radiation-damage studies in PMMA using a cryo-STXM. J. Synchrotron Radiat. 10, 280–283 (2003).

    CAS  Google Scholar 

  31. Fujii, S., Armes, S. P., Araki, T. & Ade, H. Direct imaging and spectroscopic characterization of stimulus-responsive microgels. J. Am. Chem. Soc. 127, 16808–16809 (2005).

    CAS  Google Scholar 

  32. Mitchell, G. E. et al. Quantitative characterization of microscopic variations in the cross-link density of gels. Macromolecules 35, 1336–1341 (2002).

    CAS  Google Scholar 

  33. Köhler, K. et al. Soft X-ray Microscopy to characterize polyelectrolyte assemblies. J. Phys. Chem. B 111, 8388–8393 (2007).

    Google Scholar 

  34. Déjugnat, C. et al. Membrane densification of heated polyelectrolyte multilayer capsules characterized by soft X-ray microscopy. Adv. Mater. 19, 1331–1336 (2007).

    Google Scholar 

  35. Dynes, J. J. et al. Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy. Environ. Sci. Technol. 40, 1556–1565 (2006).

    CAS  Google Scholar 

  36. Lawrence, J. R. et al. Mapping of metal species in biofilms using scanning transmission X-ray microscopy. Geochim. Cosmochim. Acta 69, A600 (2005).

    Google Scholar 

  37. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    CAS  Google Scholar 

  38. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells - Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    CAS  Google Scholar 

  39. McNeill, C. R. et al. Nanoscale quantitative chemical mapping of conjugated polymer blends. Nano Lett. 6, 1202–1206 (2006).

    CAS  Google Scholar 

  40. Hoppe, H. & Sariciftci, N. S. Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem. 16, 45–61 (2006).

    CAS  Google Scholar 

  41. Arias, A. C. et al. Photovoltaic performance and morphology of polyfluorene blends: A combined microscopic and photovoltaic investigation. Macromolecules 34, 6005–6013 (2001).

    CAS  Google Scholar 

  42. Morteani, A. C., Sreearunothai, P., Herz, L. M., Friend, R. H. & Silva, C. Exciton regeneration at polymeric semiconductor heterojunctions. Phys. Rev. Lett. 92, 247402 (2004).

    Google Scholar 

  43. McNeill, C. R. et al. X-ray microscopy of photovoltaic polyfluorene blends: Relating the nanomorphology to device performance. Macromolecules 40, 3263–3270 (2007).

    CAS  Google Scholar 

  44. McNeill, C. R. et al. Evolution of the nanomorphology of photovoltaic polyfluorene blends: Sub-100 nm resolution with X-ray spectromicroscopy. Nanotechnology 19, 424015 (2008).

    CAS  Google Scholar 

  45. Rousseau, M. E., Hernández Cruz, D., West, M. M., Hitchcock, A. P. & Pezolet, M. Nephila clavipes spider dragline silk microstructure studied by scanning transmission X-ray microscopy. J. Am. Chem. Soc. 129, 3897–3905 (2007).

    CAS  Google Scholar 

  46. Pézolet, M. et al. Mapping Protein Orientation in Spider Silk by STXM — The Effect of Water. 2007 Activity Report, 118–119 (Canadian Light Source, 2007).

    Google Scholar 

  47. Gosline, J. M., Guerette, P. A., Ortlepp, C. S. & Savage, K. N. The mechanical design of spider silks: From fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295–3303 (1999).

    CAS  Google Scholar 

  48. Bader, S. D. Magnetism in low dimensionality. Surf. Sci. 500, 172–188 (2002).

    CAS  Google Scholar 

  49. Schütz, G. et al. Absorption of circularly polarized X-Rays in iron. Phys. Rev. Lett. 58, 737–740 (1987).

    Google Scholar 

  50. Fischer, P. et al. Imaging of magnetic domains by transmission X-ray microscopy. J. Phys. D 31, 649–655 (1998).

    CAS  Google Scholar 

  51. Warwick, T. et al. A scanning transmission X-ray microscope for materials science spectromicroscopy at the Advanced Light Source. Rev. Sci. Instrum. 69, 2964–2973 (1998).

    CAS  Google Scholar 

  52. Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004).

    CAS  Google Scholar 

  53. Hubert, A. & Schäfer, R. Magnetic Domains — The Analysis of Magnetic Microstructures (Springer, 1998).

    Google Scholar 

  54. Bode, M. Spin-polarized scanning tunnelling microscopy. Rep. Prog. Phys. 66, 523–582 (2003).

    CAS  Google Scholar 

  55. Wachowiak, A. et al. Direct observation of internal spin structure of magnetic vortex cores. Science 298, 577–580 (2002).

    CAS  Google Scholar 

  56. Carra, P., Thole, B. T., Altarelli, M. & Wang, X. D. X-ray circular-dichroism and local magnetic-fields. Phys. Rev. Lett. 70, 694–697 (1993).

    CAS  Google Scholar 

  57. Thole, B. T., Carra, P., Sette, F. & Van der Laan, G. X-ray circular-dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 68, 1943–1946 (1992).

    CAS  Google Scholar 

  58. Scholl, A. et al. Observation of antiferromagnetic domains in epitaxial thin films. Science 287, 1014–1016 (2000).

    CAS  Google Scholar 

  59. Nolting, F. et al. Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature 405, 767–769 (2000).

    CAS  Google Scholar 

  60. Ohldag, H. et al. Spectroscopic identification and direct imaging of interfacial magnetic spins. Phys. Rev. Lett. 87, 247201 (2001).

    CAS  Google Scholar 

  61. Hillebrecht, F. U. et al. Magnetic moments at the surface of antiferromagnetic NiO(100). Phys. Rev. Lett. 86, 3419–3422 (2001).

    CAS  Google Scholar 

  62. Eimüller, T. et al. Spin-reorientation transition in Co/Pt multilayers on nanospheres. Phys. Rev. B 77, 134415 (2008).

    Google Scholar 

  63. Ohldag, H. et al. pi-Electron ferromagnetism in metal-free carbon probed by soft X-ray dichroism. Phys. Rev. Lett. 98, 187204 (2007).

    CAS  Google Scholar 

  64. Choe, S. B. et al. Vortex core-driven magnetization dynamics. Science 304, 420–422 (2004).

    CAS  Google Scholar 

  65. Puzic, A. et al. Spatially resolved ferromagnetic resonance: Imaging of ferromagnetic eigenmodes. J. Appl. Phys. 97, 10E704 (2005).

    Google Scholar 

  66. Chou, K. W. et al. Vortex dynamics in coupled ferromagnetic multilayer structures. J. Appl. Phys. 99, 08F305 (2006).

    Google Scholar 

  67. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    CAS  Google Scholar 

  68. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    CAS  Google Scholar 

  69. Acremann, Y. et al. Time-resolved imaging of spin transfer switching: Beyond the macrospin concept. Phys. Rev. Lett. 96, 217202 (2006).

    CAS  Google Scholar 

  70. Strachan, J. P. et al. Direct observation of spin-torque driven magnetization reversal through nonuniform modes. Phys. Rev. Lett. 100, 247201 (2008).

    CAS  Google Scholar 

  71. Bryan, M. T., Fry, P. W., Fischer, P. J. & Allwood, D. A. Observation of field-induced domain wall propagation in magnetic nanowires by magnetic transmission X-ray microscopy. J. Appl. Phys. 103, 07D909 (2008).

    Google Scholar 

  72. Meier, G. et al. Direct imaging of stochastic domain-wall motion driven by nanosecond current pulses. Phys. Rev. Lett. 98, 187202 (2007).

    Google Scholar 

  73. Argyle, B. E., Terrenzio, E. & Slonczewski, J. C. Magnetic vortex dynamics using the optical Cotton-Mouton effect. Phys. Rev. Lett. 53, 190–193 (1984).

    CAS  Google Scholar 

  74. Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973).

    Google Scholar 

  75. Huber, D. L. Equation of motion of a spin vortex in a two-dimensional planar magnet. J. Appl. Phys. 53, 1899–1900 (1982).

    Google Scholar 

  76. Okuno, T., Shigeto, K., Ono, T., Mibu, K. & Shinjo, T. MFM study of magnetic vortex cores in circular permalloy dots: behavior in external field. J. Magn. Magn. Mater. 240, 1–6 (2002).

    CAS  Google Scholar 

  77. Thiaville, A., Garcia, J. M., Dittrich, R., Miltat, J. & Schrefl, T. Micromagnetic study of Bloch-point-mediated vortex core reversal. Phys. Rev. B 67, 094410 (2003).

    Google Scholar 

  78. Van Waeyenberge, B. et al. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444, 461–464 (2006).

    CAS  Google Scholar 

  79. Xiao, Q. F., Rudge, J., Choi, B. C., Hong, Y. K. & Donohoe, G. Dynamics of vortex core switching in ferromagnetic nanodisks. Appl. Phys. Lett. 89, 262507 (2006).

    Google Scholar 

  80. Hertel, R., Gliga, S., Fähnle, M. & Schneider, C. M. Ultrafast nanomagnetic toggle switching of vortex cores. Phys. Rev. Lett. 98, 117201 (2007).

    CAS  Google Scholar 

  81. Lee, K. S., Guslienko, K. Y., Lee, J. Y. & Kim, S. K. Ultrafast vortex-core reversal dynamics in ferromagnetic nanodots. Phys. Rev. B 76, 174410 (2007).

    Google Scholar 

  82. Yamada, K. et al. Electrical switching of the vortex core in a magnetic disk. Nature Mater. 6, 269–273 (2007).

    CAS  Google Scholar 

  83. Kim, S. K., Choi, Y. S., Lee, K. S., Guslienko, K. Y. & Jeong, D. E. Electric-current-driven vortex-core reversal in soft magnetic nanodots. Appl. Phys. Lett. 91, 082506 (2007).

    Google Scholar 

  84. Curcic, M. et al. Polarisation selective magnetic vortex dynamics and core reversal in rotating magnetic fields. Phys. Rev. Lett. 101, 197204 (2008).

    Google Scholar 

  85. Zagorodny, J. P., Gaididei, Y., Mertens, F. G. & Bishop, A. R. Switching of vortex polarization in 2D easy-plane magnets by magnetic fields. Eur. Phys. J. B 31, 471–487 (2003).

    CAS  Google Scholar 

  86. Kravchuk, V. P., Sheka, D. D., Gaididei, Y. & Mertens, F. G. Controlled vortex core switching in a magnetic nanodisk by a rotating field. J. Appl. Phys. 102, 043908 (2007).

    Google Scholar 

  87. Kim, S. K., Lee, K. S., Yu, Y. S. & Choi, Y. S. Reliable low-power control of ultrafast vortex-core switching with the selectivity in an array of vortex states by in-plane circular-rotational magnetic fields and spin-polarized currents. Appl. Phys. Lett. 92, 022509 (2008).

    Google Scholar 

  88. Bolte, M. et al. Time-resolved X-ray microscopy of spin-torque-induced magnetic vortex gyration. Phys. Rev. Lett. 100, 176601 (2008).

    Google Scholar 

  89. Sandford, S. A. et al. Organics captured from comet 81P/Wild 2 by the Stardust spacecraft. Science 314, 1720–1724 (2006).

    CAS  Google Scholar 

  90. Maria, S. F., Russell, L. M., Gilles, M. K. & Myneni, S. C. B. Organic aerosol growth mechanisms and their climate-forcing implications. Science 306, 1921–1924 (2004).

    CAS  Google Scholar 

  91. Li, L. et al. X-ray microscopy studies of protein adsorption on a phase segregated polystyrene/polymethylmethacrylate surface. 2. Effect of pH on site preference. J. Phys. Chem. B 112, 2150–2158 (2008).

    CAS  Google Scholar 

  92. Si, M. et al. Compatibilizing bulk polymer blends by using organoclays. Macromolecules 39, 4793–4801 (2006).

    CAS  Google Scholar 

  93. Zhang, W. H. et al. Effect of methyl methacrylate/polyhedral oligomeric silsesquioxane random copolymers in compatibilization of polystyrene and poly(methyl methacrylate) blends. Macromolecules 35, 8029–8038 (2002).

    CAS  Google Scholar 

  94. Chao, W. L., Harteneck, B. D., Liddle, J. A., Anderson, E. H. & Attwood, D. T. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435, 1210–1213 (2005).

    CAS  Google Scholar 

  95. Jefimovs, K. et al. Zone-doubling technique to produce ultrahigh-resolution x-ray optics. Phys. Rev. Lett. 99, 264801 (2007).

    CAS  Google Scholar 

  96. Miao, J. W., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

    CAS  Google Scholar 

  97. McNulty, I., Kirz, J. & Jacobsen, C. High resolution imaging by Fourier transform X-ray holography. Science 256, 1009–1012 (1992).

    CAS  Google Scholar 

  98. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

    CAS  Google Scholar 

  99. Chapman, H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Phys. 2, 839–843 (2006).

    CAS  Google Scholar 

  100. Feldhaus, J., Arthur, J. & Hastings, J. B. X-ray free-electron lasers. J. Phys. B 38, S799–S819 (2005).

    CAS  Google Scholar 

  101. Thibault, P. et al. High-resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008).

    CAS  Google Scholar 

  102. Chapman, H. N. Focus on X-ray diffraction. Science 321, 352–353 (2008).

    CAS  Google Scholar 

  103. Araki, T. et al. Soft X-ray resonant scattering of structured polymer nanoparticles. Appl. Phys. Lett. 89, 124106 (2006).

    Google Scholar 

  104. Wang, C., Araki, T. & Ade, H. Soft X-ray resonant reflectivity of low Z material thin films. Appl. Phys. Lett. 87, 214109 (2005).

    Google Scholar 

  105. Wang, C. et al. Resonant soft X-ray reflectivity of organic thin films: Capabilities and limitations. J. Vac. Sci. Technol. A 25, 575–586 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Stöhr, R. Fink, A. P. Hitchcock, M. Pézolet, C. McNeill, Y. Acremann and H. Chapman for providing us with figures and A. P. Hitchcock for commenting on a draft document. H.A. is supported by the US Department of Energy under contract DE-FG02-98ER45737.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Ade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ade, H., Stoll, H. Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials. Nature Mater 8, 281–290 (2009). https://doi.org/10.1038/nmat2399

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2399

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing