Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunable magnetic exchange interactions in manganese-doped inverted core–shell ZnSe–CdSe nanocrystals

Abstract

Magnetic doping of semiconductor nanostructures is actively pursued for applications in magnetic memory and spin-based electronics1,2. Central to these efforts is a drive to control the interaction strength between carriers (electrons and holes) and the embedded magnetic atoms3,4,5. In this respect, colloidal nanocrystal heterostructures provide great flexibility through growth-controlled ‘engineering’ of electron and hole wavefunctions in individual nanocrystals6,7. Here, we demonstrate a widely tunable magnetic sp–d exchange interaction between electron–hole excitations (excitons) and paramagnetic manganese ions using ‘inverted’ core–shell nanocrystals composed of Mn2+-doped ZnSe cores overcoated with undoped shells of narrower-gap CdSe. Magnetic circular dichroism studies reveal giant Zeeman spin splittings of the band-edge exciton that, surprisingly, are tunable in both magnitude and sign. Effective exciton g-factors are controllably tuned from −200 to +30 solely by increasing the CdSe shell thickness, demonstrating that strong quantum confinement and wavefunction engineering in heterostructured nanocrystal materials can be used to manipulate carrier–Mn2+ wavefunction overlap and the sp–d exchange parameters themselves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An ‘inverted core–shell’ approach to tuning sp–d spin-exchange interactions in heterostructured colloidal nanocrystals.
Figure 2: Magnetic-field- and temperature-dependent Zeeman spin splitting, ΔEZ, and MCD spectra from both magnetic and non-magnetic core–shell nanocrystals.
Figure 3: Field-dependent Zeeman splitting of the 1S absorption peak, ΔEZ, and corresponding effective exciton g-factors at T=1.6 K.
Figure 4: Energy level diagrams illustrating the Zeeman splitting at the nanocrystal absorption edge, in both an exciton and an electron–hole picture.

Similar content being viewed by others

References

  1. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  2. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  3. Furdyna, J. K. Diluted magnetic semiconductors. J. Appl. Phys. 64, R29–R64 (1988).

    Article  CAS  Google Scholar 

  4. Awschalom, D. D. & Samarth, N. Spin dynamics and quantum transport in magnetic semiconductor quantum structures. J. Magn. Magn. Mater. 200, 130–147 (1999).

    Article  CAS  Google Scholar 

  5. Kossut, J. Low-dimensional structures of diluted magnetic (semimagnetic) semiconductors—a subjective review. Acta Phys. Pol. A 100, 111–138 (2001).

    Article  CAS  Google Scholar 

  6. Kim, S., Fisher, B., Eisler, H. J. & Bawendi, M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466–11467 (2003).

    Article  CAS  Google Scholar 

  7. Balet, L. P. et al. Inverted core/shell nanocrystals continuously tunable between type-I and type-II localization regimes. Nano Lett. 4, 1485–1488 (2004).

    Article  CAS  Google Scholar 

  8. Bacher, G. et al. Optical spectroscopy on individual CdSe/ZnMnSe quantum dots. Appl. Phys. Lett. 79, 524–527 (2001).

    Article  CAS  Google Scholar 

  9. Kratzert, P. R., Puls, J., Rabe, M. & Henneberger, F. Growth and magneto-optical properties of sub 10 nm (Cd, Mn)Se quantum dots. Appl. Phys. Lett. 79, 2814–2816 (2001).

    Article  CAS  Google Scholar 

  10. Besombes, L. et al. Probing the spin state of a single magnetic ion in an individual quantum dot. Phys. Rev. Lett. 93, 207403 (2004).

    Article  CAS  Google Scholar 

  11. Bhargava, R. N., Gallagher, D., Hong, X. & Nurmikko, A. Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 72, 416–419 (1994).

    Article  CAS  Google Scholar 

  12. Hoffman, D. M. et al. Giant internal magnetic fields in Mn doped nanocrystal quantum dots. Solid State Commun. 114, 547–550 (2000).

    Article  CAS  Google Scholar 

  13. Radovanovic, P. V. & Gamelin, D. R. Electronic absorption spectroscopy of cobalt ions in diluted magnetic semiconductor quantum dots: Demonstration of an isocrystalline core/shell synthetic method. J. Am. Chem. Soc. 123, 12207–12214 (2001).

    Article  CAS  Google Scholar 

  14. Norris, D. J., Yao, N., Charnock, F. T. & Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 1, 3–7 (2001).

    Article  CAS  Google Scholar 

  15. Archer, P. I., Santangelo, S. A. & Gamelin, D. R. Direct observation of sp–d exchange interactions in colloidal Mn2+- and Co2+-doped CdSe quantum dots. Nano Lett. 7, 1037–1043 (2007).

    Article  CAS  Google Scholar 

  16. Norris, D. J., Efros, Al. L. & Erwin, S. C. Doped nanocrystals. Science 319, 1776–1779 (2008).

    Article  CAS  Google Scholar 

  17. Bhattacharjee, A. K. & Perez-Conde, J. Optical properties of paramagnetic ion-doped semiconductor nanocrystals. Phys. Rev. B 68, 045303 (2003).

    Article  Google Scholar 

  18. Archer, P. I., Santangelo, S. A. & Gamelin, D. R. Inorganic cluster syntheses of TM2+-doped quantum dots (CdSe, CdS, CdSe/CdS): Physical property dependence on dopant locale. J. Am. Chem. Soc. 129, 9808–9818 (2007).

    Article  CAS  Google Scholar 

  19. Erwin, S. C. et al. Doping semiconductor nanocrystals. Nature 436, 91–94 (2005).

    Article  CAS  Google Scholar 

  20. Beaulac, R. et al. Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots. Nano Lett. 8, 1197–1201 (2008).

    Article  CAS  Google Scholar 

  21. Kuno, M. et al. Magnetic circular dichroism study of CdSe quantum dots. J. Chem. Phys. 108, 4242–4247 (1998).

    Article  CAS  Google Scholar 

  22. Myers, R. C. et al. Optoelectronic control of spin dynamics at near-terahertz frequencies in magnetically doped quantum wells. Phys. Rev. B 72, 041302 (2005).

    Article  Google Scholar 

  23. Gaj, J. A. in Diluted Magnetic Semiconductors Vol. 25 (eds Furdyna, J. K. & Kossut, J.) 275–309 (Academic, 1988).

    Google Scholar 

  24. Efros, Al. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996).

    Article  CAS  Google Scholar 

  25. Mackh, G., Ossau, W., Waag, A. & Landwehr, G. Effect of the reduction of dimensionality on the exchange parameters in semimagnetic semiconductors. Phys. Rev. B 54, R5227–R5230 (1996).

    Article  CAS  Google Scholar 

  26. Merkulov, I. A. et al. Kinetic exchange between the conduction band electrons and magnetic ions in quantum-confined structures. Phys. Rev. Lett. 83, 1431–1434 (1999).

    Article  CAS  Google Scholar 

  27. Myers, R. C. et al. Antiferromagnetic s–d exchange coupling in GaMnAs. Phys. Rev. Lett. 95, 017204 (2005).

    Article  CAS  Google Scholar 

  28. Bhattacharjee, A. K. Confinement-induced reduction of the effective exchange parameters in semimagnetic semiconductor nanostructures. Phys. Rev. B 58, 15660–15665 (1998).

    Article  CAS  Google Scholar 

  29. Larson, B. E. & Ehrenreich, H. Anisotropic superexchange and spin-resonance linewidth in diluted magnetic semiconductors. Phys. Rev. B 39, 1747–1759 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Prall for technical assistance. This work was supported by Los Alamos LDRD Funds and the Chemical Sciences, Biosciences, and Geosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy (DOE). D.A.B. and V.I.K. are partially supported by the DOE Center for Integrated Nanotechnologies jointly operated by Los Alamos and Sandia National Laboratories. A.L.E. acknowledges financial support from ONR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Scott A. Crooker or Victor I. Klimov.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bussian, D., Crooker, S., Yin, M. et al. Tunable magnetic exchange interactions in manganese-doped inverted core–shell ZnSe–CdSe nanocrystals. Nature Mater 8, 35–40 (2009). https://doi.org/10.1038/nmat2342

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing