Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-volatile ferroelectric control of ferromagnetism in (Ga,Mn)As

Abstract

Multiferroic structures that provide coupled ferroelectric and ferromagnetic responses are of significant interest as they may be used in novel memory devices and spintronic logic elements1,2,3,4. One approach towards this goal is the use of composites that couple ferromagnetic and ferroelectric layers through magnetostrictive and piezoelectric strain transmitted across the interfaces5,6,7. However, mechanical clamping of the films to the substrate limits their response1,8. Structures where the magnetic response is modulated directly by the electric field of the poled ferroelectric would eliminate this constraint and provide a qualitatively higher level of integration, combining the emerging field of multiferroics with conventional semiconductor microelectronics. Here, we report the realization of such a device using (Ga,Mn)As, which is an archetypical diluted magnetic semiconductor with well-understood carrier-mediated ferromagnetism, and a polymer ferroelectric gate. Polarization reversal of the gate by a single voltage pulse results in a persistent modulation of the Curie temperature of the ferromagnetic semiconductor. The non-volatile gating of (Ga,Mn)As has been made possible by applying a low-temperature copolymer deposition technique that is distinct from pre-existing technologies for ferroelectric gates on magnetic oxides. This accomplishment opens a way to nanometre-scale modulation of magnetic semiconductor properties with rewritable ferroelectric domain patterns, operating at modest voltages and subnanosecond times.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic longitudinal cross-section of the Hall bar based on film I.
Figure 2: Ferroelectric gate operation and temperature dependence of the sheet resistance for film I.
Figure 3: Control of ferromagnetism through ferroelectric switching: determination of the ferromagnetic TC change by Arrott plots for film I.
Figure 4: Control of ferromagnetism through ferroelectric switching: change of hysteretic properties by poling ferroelectric gate.

Similar content being viewed by others

References

  1. Ramesh, R. & Spaldin, N. A. Multiferroics: Progress and prospects in thin films. Nature Mater. 6, 21–29 (2007).

    Article  CAS  Google Scholar 

  2. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  3. Cheong, S. W. & Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

    Article  CAS  Google Scholar 

  4. Ahn, C. H. et al. Electrostatic modification of novel materials. Rev. Mod. Phys. 78, 1185–1212 (2006).

    Article  CAS  Google Scholar 

  5. Wu, T. et al. Observation of magnetoelectric effect in epitaxial ferroelectric film/manganite crystal heterostructures. Phys. Rev. B 73, 134416 (2006).

    Article  Google Scholar 

  6. Wan, J. G., Liu, J. M., Wang, G. H. & Nan, C. W. Electric-field-induced magnetization in Pb(Zr,Ti)O-3/Terfenol-D composite structures. Appl. Phys. Lett. 88, 182502 (2006).

    Article  Google Scholar 

  7. Dorr, K. & Thiele, C. Multiferroic bilayers of manganites and titanates. Phys. Status Solidi B 243, 21–28 (2006).

    Article  Google Scholar 

  8. Srinivasan, G. et al. Structural and magnetoelectric properties of MFe2O4-PZT (M=Ni,Co) and La−x(Ca,Sr)(1−x)MnO3-PZT multilayer composites. Appl. Phys. A 78, 721–728 (2004).

    Article  CAS  Google Scholar 

  9. Kanki, T., Tanaka, H. & Kawai, T. Electric control of room temperature ferromagnetism in a Pb(Zr0.2Ti0.8)O−3/La0.85Ba0.15MnO3 field-effect transistor. Appl. Phys. Lett. 89, 242506 (2006).

    Article  Google Scholar 

  10. Zhao, T. et al. Electric field effect in diluted magnetic insulator anatase Co:TiO2 . Phys. Rev. Lett. 94, 126601 (2005).

    Article  CAS  Google Scholar 

  11. Venkatesan, T., Kundaliya, D. C., Wu, T. & Ogale, S. B. Novel approaches to field modulation of electronic and magnetic properties of oxides. Phil. Mag. Lett. 87, 279–292 (2007).

    Article  CAS  Google Scholar 

  12. Dietl, T. & Ohno, H. Engineering magnetism in semiconductors. Mater. Today 9, 18–26 (2006).

    Article  CAS  Google Scholar 

  13. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  14. Chiba, D., Yamanouchi, M., Matsukura, F. & Ohno, H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003).

    Article  CAS  Google Scholar 

  15. Nazmul, A. M., Kobayashi, S., Sugahara, S. & Tanaka, M. Electrical and optical control of ferromagnetism in III–V semiconductor heterostructures at high temperature (similar to 100 K). Jpn. J. Appl. Phys. Part 2 43, L233–L236 (2004).

    Article  CAS  Google Scholar 

  16. Boukari, H. et al. Light and electric field control of ferromagnetism in magnetic quantum structures. Phys. Rev. Lett. 88, 207204 (2002).

    Article  CAS  Google Scholar 

  17. Park, Y. D. et al. A group-IV ferromagnetic semiconductor: MnxGe1−x . Science 295, 651–654 (2002).

    Article  CAS  Google Scholar 

  18. Chiba, D., Matsukura, F. & Ohno, H. Electric-field control of ferromagnetism in (Ga,Mn)As. Appl. Phys. Lett. 89, 162505 (2006).

    Article  Google Scholar 

  19. VanEsch, A. et al. Interplay between the magnetic and transport properties in the III–V diluted magnetic semiconductor Ga1−xMnxAs. Phys. Rev. B 56, 13103–13112 (1997).

    Article  CAS  Google Scholar 

  20. Naber, R. C. G. et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nature Mater. 4, 243–248 (2005).

    Article  CAS  Google Scholar 

  21. Rushforth, A. W. et al. AMR and magnetometry studies of ultra thin GaMnAs films. Phys. Status Solidi C 3, 4078–4081 (2006).

    Article  CAS  Google Scholar 

  22. Stolichnov, I. et al. Unusual size effect on the polarization patterns in micron-size Pb(Zr,Ti)O3 film capacitors. Appl. Phys. Lett. 80, 4804–4806 (2002).

    Article  CAS  Google Scholar 

  23. Matsukura, F., Ohno, H., Shen, A. & Sugawara, Y. Transport properties and origin of ferromagnetism in (Ga,Mn)As. Phys. Rev. B 57, R2037–R2040 (1998).

    Article  CAS  Google Scholar 

  24. Jungwirth, T., Niu, Q. & MacDonald, A. H. Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 88, 207208 (2002).

    Article  CAS  Google Scholar 

  25. Arrott, A. Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev. 108, 1394–1396 (1957).

    Article  CAS  Google Scholar 

  26. Jungwirth, T. et al. Prospects for high temperature ferromagnetism in (Ga,Mn)As semiconductors. Phys. Rev. B 72, 165204 (2005).

    Article  Google Scholar 

  27. Jungwirth, T., Abolfath, M., Sinova, J., Kucera, J. & MacDonald, A. H. Boltzmann theory of engineered anisotropic magnetoresistance in (Ga,Mn)As. Appl. Phys. Lett. 81, 4029–4031 (2002).

    Article  CAS  Google Scholar 

  28. Jungwirth, T., Konig, J., Sinova, J., Kucera, J. & MacDonald, A. H. Curie temperature trends in (III,Mn)V ferromagnetic semiconductors. Phys. Rev. B 66, 012402 (2002).

    Article  Google Scholar 

  29. Jungwirth, T., Sinova, J., Masek, J., Kucera, J. & MacDonald, A. H. Theory of ferromagnetic (III,Mn)V semiconductors. Rev. Mod. Phys. 78, 809–864 (2006).

    Article  CAS  Google Scholar 

  30. Kudrnovsky, J., Bouzerar, G. & Turek, I. Relation of Curie temperature and conductivity: (Ga,Mn)As alloy as a case study. Appl. Phys. Lett. 91, 102509 (2007).

    Article  Google Scholar 

  31. Olejnik, K. et al. Enhanced annealing, high Curie temperature and low-voltage gating in (Ga,Mn)As: A surface oxide control study. Preprint at <http://arxiv.org/abs/0802.2080> (2008).

  32. Rushforth, A. W. et al. Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor/piezoelectric hybrid structures. Preprint at <http://arXiv.org/abs/0801.0886> (2008).

Download references

Acknowledgements

We acknowledge support from the Swiss National Science Foundation; Swiss Program on NanoSciences (NCCR); EU Grant IST-015728, UK Grant GR/S81407/01; CR Grants FON/06/E002, AV0Z1010052, KAN400100652 and LC510; US NRI Grant SWAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Stolichnov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolichnov, I., Riester, S., Trodahl, H. et al. Non-volatile ferroelectric control of ferromagnetism in (Ga,Mn)As. Nature Mater 7, 464–467 (2008). https://doi.org/10.1038/nmat2185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing