Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical control of Förster energy transfer

Abstract

Bringing together compounds of intrinsically different functionality, such as inorganic nanostructures and organic molecules, constitutes a particularly powerful route to creating novel functional devices with synergetic properties found in neither of the constituents. We introduce nanophotonic functional elements combining two classes of materials, semiconductor nanocrystals1 and dyes, whose physical nature arises as a superposition of the properties of the individual components. The strongly absorbing rod-like nanocrystals2 focus the incident radiation by photopumping the weakly absorbing dye via energy transfer. The CdSe/CdS nanorods exhibit a large quantum-confined Stark effect3 on the single-particle level, which enables direct control of the spectral resonance between donor and acceptor required for nanoscopic Förster-type energy transfer in single nanorod–dye couples. With this far-field manipulation of a near-field phenomenon, the emission from single dye molecules can be controlled electrically. We propose that this effect could lead to the design of single-molecule optoelectronic switches providing building blocks for more complex nanophotonic circuitry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrically tunable energy transfer from a single semiconductor nanorod to a dye molecule.
Figure 2: Fluorescence micrographs demonstrating resonant energy transfer from single nanocrystals to single dye molecules at 50 K.
Figure 3: Electrical tuning of resonant energy transfer from nanocrystals to single dye molecules using the QCSE at 50 K.

Similar content being viewed by others

References

  1. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  Google Scholar 

  2. Talapin, D. V. et al. Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett. 3, 1677–1681 (2003).

    Article  Google Scholar 

  3. Müller, J. et al. Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement. Nano Lett. 5, 2044–2049 (2005).

    Article  Google Scholar 

  4. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    Article  Google Scholar 

  5. Willard, D. M., Carillo, L. L., Jung, J. & Van Orden, A. CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Lett. 1, 469–474 (2001).

    Article  Google Scholar 

  6. Kloepfer, J. A., Cohen, N. & Nadeau, J. L. FRET between CdSe quantum dots in lipid vesicles and water- and lipid-soluble dyes. J. Phys. Chem. B 108, 17042–17049 (2004).

    Article  Google Scholar 

  7. Ebenstein, Y., Mokari, T. & Banin, U. Quantum-dot-functionalized scanning probes for fluorescence-energy-transfer-based microscopy. J. Phys. Chem. B 108, 93–99 (2004).

    Article  Google Scholar 

  8. Hohng, S. & Ha, T. Single-molecule quantum-dot fluorescence resonance energy transfer. ChemPhysChem. 6, 956–960 (2005).

    Article  Google Scholar 

  9. Medintz, I. L. et al. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc. Natl Acad. Sci. USA 101, 9612–9617 (2004).

    Article  Google Scholar 

  10. Müller, F. et al. Investigation of energy transfer between CdTe nanocrystals on polystyrene beads and dye molecules for FRET-SNOM applications. J. Phys. Chem. B 108, 14527–14534 (2004).

    Article  Google Scholar 

  11. Potapova, I. et al. CdSe/ZnS nanocrystals with dye-functionalized polymer ligands containing many anchor groups. Angew. Chem. Int. Edn 44, 2437–2440 (2005).

    Article  Google Scholar 

  12. Zhang, C.-Y., Yeh, H.-C., Kuroki, M. T. & Wang, T.-H. Single-quantum-dot-based DNA nanosensor. Nature Mater. 4, 826–831 (2005).

    Article  Google Scholar 

  13. Kiraz, A., Ehrl, M., Bräuchle, C. & Zumbusch, A. Low temperature single molecule spectroscopy using vibronic excitation and dispersed fluorescence detection. J. Chem. Phys. 118, 10821–10824 (2003).

    Article  Google Scholar 

  14. Orrit, M., Bernard, J., Zumbusch, A. & Personov, R. I. Stark effect on single molecules in a polymer matrix. Chem. Phys. Lett. 196, 595–600 (1992).

    Article  Google Scholar 

  15. Empedocles, S. A. & Bawendi, M. G. Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots. Science 278, 2114–2117 (1997).

    Article  Google Scholar 

  16. Rothenberg, E., Kazes, M., Shaviv, E. & Banin, U. Electric field induced switching of the fluorescence of single semiconductor quantum rods. Nano Lett. 5, 1581–1586 (2005).

    Article  Google Scholar 

  17. Heilemann, M., Margeat, E., Kasper, R., Sauer, M. & Tinnefeld, P. Carbocyanine dyes as efficient reversible single-molecule optical switch. J. Am. Chem. Soc. 127, 3801–3806 (2005).

    Article  Google Scholar 

  18. Wagner, R. W., Lindsey, J. S., Seth, J., Palaniappan, V. & Bocian, D. F. Molecular optoelectronic gates. J. Am. Chem. Soc. 118, 3996–3997 (1996).

    Article  Google Scholar 

  19. Xu, Q.-H. et al. The fluorescence resonance energy transfer (FRET) gate: A time-resolved study. Proc. Natl Acad. Sci. USA 102, 530–535 (2005).

    Article  Google Scholar 

  20. White, S. S., Ying, L., Balasubramanian, S. & Klenerman, D. Individual molecules of dye-labeled DNA act as a reversible two-color switch upon application of an electric field. Angew. Chem. Int. Edn 43, 5926–5930 (2004).

    Article  Google Scholar 

  21. Franzl, T., Klar, T. A., Schietinger, S., Rogach, A. L. & Feldmann, J. Exciton recycling in graded gap nanocrystal structures. Nano Lett. 4, 1599–1603 (2004).

    Article  Google Scholar 

  22. Crooker, S. A., Hollingsworth, J. A., Tretiak, S. & Klimov, V. I. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: Towards engineered energy flows in artificial materials. Phys. Rev. Lett. 89, 186802 (2002).

    Article  Google Scholar 

  23. Calzaferri, G., Huber, S., Maas, H. & Minkowski, C. Host-guest antenna materials. Angew. Chem. Int. Edn 42, 3732–3758 (2003).

    Article  Google Scholar 

  24. Hecht, S. & Fréchet, J. M. J. Dendritic encapsulation of function: Applying nature’s site isolation principle from biomimetics to materials science. Angew. Chem. Int. Edn 40, 74–91 (2001).

    Article  Google Scholar 

  25. Fleming, G. R. & Scholes, G. D. Quantum mechanics for plants. Nature 431, 256–257 (2004).

    Article  Google Scholar 

  26. McQuade, D. T., Pullen, A. E. & Swager, T. M. Conjugated polymer-based chemical sensors. Chem. Rev. 100, 2537–2574 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Susha for helpful discussions and W. Stadler and A. Helfrich for technical assistance. Financial support by the Volkswagen Stiftung and the Deutsche Forschungsgemeinschaft through the Gottfried Wilhelm Leibniz award and the Sonderforschungsbereich 486 is gratefully acknowledged. Work at the Molecular Foundry was supported by the U S Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Lupton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and figures S1-S13

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, K., Lupton, J., Müller, J. et al. Electrical control of Förster energy transfer. Nature Mater 5, 777–781 (2006). https://doi.org/10.1038/nmat1738

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing