Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Going beyond the reflectance limit of cholesteric liquid crystals

Abstract

Cholesteric liquid-crystalline states of matter are abundant in nature: atherosclerosis1, arthropod cuticles2,3, condensed phases of DNA4, plant cell walls2,5, human compact bone osteon6, and chiral biopolymers7,8,9,10. The self-organized helical structure produces unique optical properties11. Light is reflected when the wavelength matches the pitch (twice periodicity); cholesteric liquid crystals are not only coloured filters, but also reflectors and polarizers. But, in theory, the reflectance is limited to 50% of the ambient (unpolarized) light because circularly polarized light of the same handedness as the helix is reflected. Here we give details of a cholesteric medium for which the reflectance limit is exceeded. Photopolymerizable monomers are introduced into a cholesteric medium exhibiting a thermally induced helicity inversion, and the blend is then cured with ultraviolet light when the helix is right-handed. Because of memory effects attributable to the polymer network, the reflectance exceeds 50% when measured at the temperature assigned for a cholesteric helix with the same pitch but a left-handed sense before the reaction. As cholesteric materials are used as tunable bandpass filters, reflectors or polarizers and temperature or pressure sensors12, novel opportunities to modulate the reflection over the whole light flux range, instead of only 50%, are offered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transmission spectra.
Figure 2: Transmission spectra.
Figure 3: SEM images of the polymer network formed in the cholesteric phase.
Figure 4: Three-dimensional model of the cholesteric organization.

Similar content being viewed by others

References

  1. Small, D. M. Liquid crystals in living and dying systems. J. Colloid Interface Sci. 58, 581–602 (1977).

    Article  Google Scholar 

  2. Neville, A. C. Biology of Fibrous Composites: Development Beyond the Cell (Cambridge Univ. Press, Cambridge, 1993).

    Book  Google Scholar 

  3. Bouligand, Y. Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 4, 189–217 (1972).

    Article  Google Scholar 

  4. Livolant, F. & Leforestier, A. Condensed phases of DNA: structures and phase transitions. Prog. Polym. Sci. 21, 1115–1164 (1996).

    Article  Google Scholar 

  5. Reis, D., Vian, B. & Roland, J.-C. Cellulose-glucuronoxylans and plant cell wall structure. Micron 25, 171–187 (1994).

    Article  Google Scholar 

  6. Giraud-Guille, M.-M. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif. Tissue Int. 42, 167–180 (1988).

    Article  Google Scholar 

  7. Yevdokimov, Yu. M., Skurdin, S. G. & Salyanov, V. I. The liquid-crystalline phases of double-stranded nucleic acids in vitro and in vivo. Liq. Cryst. 3, 1443–1459 (1988).

    Article  Google Scholar 

  8. Van Winkle, D. H., Davidson, M. W., Chen, W. X. & Rill, R. L. Cholesteric helical pitch near persistence length DNA. Macromolecules 23, 4140–4148 (1990).

    Article  Google Scholar 

  9. Dogic, Z. & Fraden, S. Cholesteric phase in virus suspensions. Langmuir 16, 7820–7824 (2000).

    Article  Google Scholar 

  10. Sato, T., Nakamura, J., Teramoto, A. & Green, M. M. Cholesteric pitch of lyotropic liquid crystals. Macromolecules 31, 1398–1405 (1998).

    Article  Google Scholar 

  11. Collings, P. J. & Hird, M. Introduction to Liquid Crystals, Chemistry and Physics 223–243 (Taylor & Francis, London, 1997).

    Book  Google Scholar 

  12. Bahadur, B. (ed.) Liquid Crystals: Applications and Uses Vols 1–3 (World Scientific, Singapore, 1990).

  13. Srinivasarao, M. Nano-optics in the biological world: beetles, butterflies, birds and moths. Chem. Rev. 99, 1935–1961 (1999).

    Article  Google Scholar 

  14. Neville, A. C. Daily growth layers in animals and plants. Biol. Rev. 42, 421–441 (1967).

    Article  Google Scholar 

  15. Neville, A. C. & Caveney, S. Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals. Biol. Rev. 44, 531–562 (1969).

    Article  Google Scholar 

  16. Caveney, S. Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid. Proc. R. Soc. Lond. B 178, 205–225 (1971).

    Article  Google Scholar 

  17. de Gennes, P.-G. & Prost, J. The Physics of Liquid Crystals 264–268 (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  18. Kuball, H.-G. & Höfer, T. in Chirality in Liquid Crystals (eds Kitzerow, H.-S. & Bahr, C.) 86–88 (Springer, New York, 2001).

    Google Scholar 

  19. Huff, B. P., Krich, J. J. & Collings, P. J. Helix inversion in the chiral nematic and isotropic phases of a liquid crystal. Phys. Rev. E 61, 5372–5378 (2000).

    Article  Google Scholar 

  20. Slaney, A. J., Nishiyama, I., Styring, P. & Goodby, J. W. Twist inversion in a cholesteric material containing a single chiral centre. J. Mater. Chem. 2, 805–810 (1992).

    Article  Google Scholar 

  21. Styring, P., Vuijk, J. D., Slaney, A. J. & Goodby, J. W. Inversion of chirality-dependent properties in optically active liquid crystals. J. Mater. Chem. 3, 399–405 (1993).

    Article  Google Scholar 

  22. Stegemeyer, H., Siemensmeyer, K., Sucrow, W. & Appel, L. Liquid crystalline norcholesterylesters: influence of the axial methylgroups on the phase transitions and the cholesteric helix. Z. Naturforsch. A 44, 1127–1130 (1989).

    Article  Google Scholar 

  23. Dierking, I. et al. Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells. Liq. Cryst. 13, 45–55 (1993).

    Article  Google Scholar 

  24. Kuball, H.-G., Muller, T. & Weyland, H.-G. Induced cholesteric phases of chiral aminoanthraquinones. Mol. Cryst. Liq. Cryst. 215, 271–278 (1992).

    Article  Google Scholar 

  25. Kuball, H.-G., Muller, T., Bruning, H. & Schonhofer, A. Chiral induction by optically active aminoanthraquinones in nematic phases. Mol. Cryst. Liq. Cryst. 261, 845–856 (1995).

    Article  Google Scholar 

  26. Dierking, I. et al. The origin of the helical twist inversion in single component cholesteric liquid crystals. Z. Naturforsch. 49, 1081–1086 (1994).

    Article  Google Scholar 

  27. Dierking, I. et al. New diastereomeric compound with cholesteric twist inversion. Liq. Cryst. 18, 443–449 (1995).

    Article  Google Scholar 

  28. Broer, D. J. & Heynderickx, I. Three dimensionally ordered polymer networks with a helicoidal structure. Macromolecules 23, 2474–2477 (1990).

    Article  Google Scholar 

  29. Dierking, I., Kosbar, L. L., Afzali-Ardakani, A., Lowe, A. C. & Held, G. A. Network morphology of polymer stabilized liquid crystals. Appl. Phys. Lett. 71, 2454–2456 (1997).

    Article  Google Scholar 

  30. Bouligand, Y. Liquid crystals and their analogs in biological systems. Solid State Phys. 14, 259–294 (1978).

    Google Scholar 

  31. Besseau, L. & Bouligand, Y. The twisted collagen network of the box-fish scutes. Tissue Cell 30, 251–260 (1998).

    Article  Google Scholar 

  32. Dierking, I., Kosbar, L. L., Afzali-Ardakani, A., Lowe, A. C. & Held, G. A. Two-stage switching behaviour of polymer stabilized cholesteric textures. J. Appl. Phys. 81, 3007–3014 (1997).

    Article  Google Scholar 

  33. Yang, D.-K., Chien, L.-C. & Fung, Y. K. in Liquid Crystals in Complex Geometries (eds Crawford, G. P. & Zumer, S.) 103–142 (Taylor & Francis, London, 1996).

    Google Scholar 

  34. Hikmet, R. A. M. From liquid crystalline molecules to anisotropic gels. Mol. Cryst. Liq. Cryst. 198, 357–370 (1991).

    Article  Google Scholar 

  35. Heppke, G., Lötzsch, D. & Oestreicher, F. Esters of (S)-1,2-propanediol and (R,R)-2,3-butanediol — chiral compounds inducing cholesteric phases with a helix inversion. Z. Naturforsch. A 42, 279–283 (1987).

    Article  Google Scholar 

  36. Besseau, L. & Giraud-Guille, M.-M. Stabilization of fluid cholesteric phases of collagen to ordered gelated matrices. J. Mol. Biol. 251, 197–202 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge S. Rauch, D. Loetzsch, G. Heppke and M. Dzionara (from Stranski-Laboratorium für Physikalische und Theoretische Chemie in Technische Universität Berlin) who participated in the synthesis of the helicity-inversion chiral dopant DL6 and provided us with it. C. Bourgerette (from CEMES) participated in the material preparation for SEM-FEG investigations and, with S. Leblond du Plouy (from University Paul-Sabatier, Toulouse), helped us during the observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Mitov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information and figure 1S (PDF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitov, M., Dessaud, N. Going beyond the reflectance limit of cholesteric liquid crystals. Nature Mater 5, 361–364 (2006). https://doi.org/10.1038/nmat1619

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1619

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing