Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Study of colloidal quantum-dot surfaces using an innovative thin-film positron 2D-ACAR method

Abstract

Nanosized inorganic particles are of great interest because their electronic properties can be easily tailored, providing a tremendous potential for applications in optoelectronic devices, light-emitting diodes1, solar cells2,3,4 and hydrogen storage5. Confinement of electrons and holes to dimensions comparable to their wavelength leads to quantum-well states with modified wavefunctions and density of states6. Surface phenomena are crucial in determining nanoparticle properties in view of their large surface-to-volume ratio. Despite a wealth of information, many fundamental questions about the nature of the surface and its relationship with the electronic structure remain unsolved. Ab initio calculations on CdSe nanocrystals7 suggest that passivating the ligands does not produce the ideal wurtzite structure and that Se atoms relax outwards irrespective of passivation. Here we show that implanted positrons are trapped at the surface of CdSe nanocrystals. They annihilate mostly with the Se electrons, monitor changes in composition and structure of the surface while hardly sensing the ligand molecules, and we thus unambiguously confirm the predicted strong surface relaxation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SW plot as a function of size for colloidal CdSe nanocrystals over the diameter range 2.5–6 nm, and for a bulk CdSe single crystal.
Figure 2: Isotropic electron–positron momentum distribution.
Figure 3: Isotropic electron–positron momentum distribution ρ2γ(p) obtained by first principles band structure calculations on zincblende CdSe.
Figure 4: Cd(4d) contribution, ICd, to the electron–positron momentum density (relative to bulk CdSe) versus Doppler S parameter.
Figure 5: Schematic drawing of the shell-like positron density |ψ+(r)|2 in the trapped state at the surface of the quantum dot.

Similar content being viewed by others

References

  1. Schlamp, M. C., Peng, X. & Alivisatos, A. P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 82, 5837–5842 (1997).

    Article  Google Scholar 

  2. Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002).

    Article  Google Scholar 

  3. O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–739 (1991).

    Article  Google Scholar 

  4. Bach, U. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998).

    Article  Google Scholar 

  5. Nutzenädel, C., Züttel, A., Chartouni, D., Schmid, G. & Schlapbach, L. Critical size and surface effect of the hydrogen interaction of palladium clusters. Eur. Phys. J. D 8, 245–250 (2000).

    Article  Google Scholar 

  6. Bányai, L. & Koch, S. W. Semiconductor Quantum Dots (World Scientific, Singapore, 1993).

    Book  Google Scholar 

  7. Puzder, A., Williamson, A. J., Gygi, F. & Galli, G. Self-healing of CdSe nanocrystals: First-principles calculations. Phys. Rev. Lett. 92, 217401 (2004).

    Article  Google Scholar 

  8. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Res. 30, 545–610 (2000).

    Google Scholar 

  9. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  Google Scholar 

  10. Manna, L., Scher, E. C., Li, L.-S. & Alivisatos, A. P. Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J. Am. Chem. Soc. 124, 7136–7145 (2002).

    Article  Google Scholar 

  11. Van Huis, M. A. et al. Positron confinement in embedded lithium nanoclusters. Phys. Rev. B 65, 085416 (2002).

    Article  Google Scholar 

  12. Weber, M. H., Lynn, K. G., Barbiellini, B., Sterne, P. A. & Denison, A. B. Direct observation of energy-gap scaling law in CdSe quantum dots with positrons. Phys. Rev. B 66, 041305(R) (2002).

    Article  Google Scholar 

  13. West, R. N. in Positron Spectroscopy of Solids (eds Dupasquier, A. & Mills, A. P. Jr) (IOS Press, Amsterdam, 1995).

    Google Scholar 

  14. Van Veen, A., Schut, H. & Mijnarends, P. E. in Positron Beams and their Applications (ed. Coleman, P. G.) (World Scientific, Singapore, 2000).

    Google Scholar 

  15. Liszkay, L. et al. Positron annihilation in ZnSe layers grown on GaAs: Zinc vacancies and drift in the electric field at the ZnSe/GaAs interface. Appl. Phys. Lett. 70, 2723–2725 (1997).

    Article  Google Scholar 

  16. Saarinen, K. et al. Identification of the native vacancy defects in both sublattices of ZnSxSe1−x by positron annihilation. Phys. Rev. Lett. 77, 3407–3410 (1996).

    Article  Google Scholar 

  17. Gebauer, J., Krause-Rehberg, R., Prokesch, M. & Irmscher, K. Identification and quantitative evaluation of compensating Zn-vacancy-donor complexes in ZnSe by positron annihilation. Phys. Rev. B 66, 115206 (2002).

    Article  Google Scholar 

  18. Falub, C. V. et al. Electronic structure and orientation relationship of Li nanoclusters embedded in MgO studied by depth-selective positron annihilation two-dimensional angular correlation. Phys. Rev. B 66, 075426 (2002).

    Article  Google Scholar 

  19. Van Veen, A. et al. Intense positron sources and their applications. Mater. Sci. Forum 363–365, 415–419 (2001).

    Article  Google Scholar 

  20. Van Veen, A., Schut, H., Labohm, F. & de Roode, J. Positron extraction and transport in a nuclear-reactor-based positron beam. Nucl. Instrum. Methods A 427, 266–270 (1999).

    Article  Google Scholar 

  21. Mijnarends, P. E. & Bansil, A. in Positron Spectroscopy of Solids (eds Dupasquier, A. & Mills, A. P. Jr) (IOS Press, Amsterdam, 1995).

    Google Scholar 

  22. Bansil, A., Kaprzyk, S., Mijnarends, P. E. & Toboła, J. Electronic structure and magnetism of Fe3−xVxX (X= Si, Ga, and Al) alloys by the KKR-CPA method. Phys. Rev. B 60, 13396–13412 (1999).

    Article  Google Scholar 

  23. Betts, D. D., Bhatia, A. B. & Horton, G. K. Debye characteristic temperatures of certain noncubic crystals. Phys. Rev. 104, 43–47 (1956).

    Article  Google Scholar 

  24. Betts, D. D., Bhatia, A. B. & Wyman, M. Houston’s method and its application to the calculation of characteristic temperatures of cubic crystals. Phys. Rev. 104, 37–42 (1956).

    Article  Google Scholar 

  25. Saniz, R., Barbiellini, B. & Denison, A. Compton scattering, positron annihilation, and the electronic properties of quantum dots. Phys. Rev. B 65, 245310 (2002).

    Article  Google Scholar 

  26. Plazaola, F., Seitsonen, A. P. & Puska, M. J. Positron annihilation in II–VI compound semiconductors: theory. J. Phys. Condens. Matter 6, 8809–8827 (1994).

    Article  Google Scholar 

  27. Krause-Rehberg, R. & Leipner, H. S. Positron Annihilation in Semiconductors 318–319 (Springer, Berlin, 1999).

    Book  Google Scholar 

  28. Bowen Katari, J. E., Colvin, V. L. & Alivisatos, A. P. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem. 98, 4109–4117 (1994).

    Article  Google Scholar 

  29. Taylor, J., Kippeny, T. & Rosenthal, S. J. Surface stoichiometry of CdSe nanocrystals determined by Rutherford backscattering spectroscopy. J. Clust. Sci. 12, 571–582 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the USDOE contract DE-AC03-76SF00098, and benefited from the allocation of supercomputer time at NERSC, Northeastern University’s Advanced Scientific Computation Center (ASCC) and the NCF (Foundation National Computer Facilities) with support from NWO. We thank N. Zaitseva for the generous supply of CdSe quantum-dot samples and A. Houtepen and D. A. M. Vanmaekelbergh for the pyridine-capped CdSe quantum-dot sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Barbiellini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eijt, S., van Veen, A., Schut, H. et al. Study of colloidal quantum-dot surfaces using an innovative thin-film positron 2D-ACAR method. Nature Mater 5, 23–26 (2006). https://doi.org/10.1038/nmat1550

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1550

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing