Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oxidation of magnesia-supported Pd-clusters leads to the ultimate limit of epitaxy with a catalytic function

Abstract

Oxide-supported transition-metal clusters and nanoparticles have attracted significant attention owing to their important role as components of model catalysts1,2,3,4,5,6, sensors7, solar cells8 and magnetic recording devices9. For small clusters, functionality and structure are closely interrelated. However, knowledge of the structure of the bare cluster is insufficient as the interaction with the chemical environment might cause drastic structural changes. Here we show by ab initio simulations based on the density functional theory that the reaction with molecular oxygen transforms small, non-crystalline, magnesia-supported Pd-clusters to crystalline PdxOy nano-oxide clusters that are in epitaxy with the underlying support. Restructuring of the Pd backbone is controlled by the electrostatic interaction with magnesia leading to a strong reduction of the O2 dissociation barrier. The supported PdxOy clusters are likely to serve as Mars–van Krevelen10 oxygen reservoirs in catalytic oxidation reactions as observed for PdO overlayers11 and demonstrated here for the oxidation of CO molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The oxidation of magnesia-supported and gas-phase Pd4.
Figure 2: Structural growth motif of bare and oxidized palladium clusters on MgO(FC).
Figure 3: Possible CO oxidation reaction pathways A–B–C–D–E, A–F–G–H–E and A–I–J–K–E on O4Pd9/MgO(FC).

Similar content being viewed by others

References

  1. Lambert, R. M. & Pacchioni, G. (eds) Chemisorption and Reactivity on Supported Clusters and Thin Films 395–424 (Kluwer, Dordrecht, 1997).

  2. Grönbeck, H. First principles studies of metal-oxide surfaces. Top. Catal. 28, 59–69 (2004).

    Article  Google Scholar 

  3. Heiz, U. & Schneider, W.-D. in Metal Clusters at Surfaces (ed. Meiwes-Broer, K. H.) 237–273 (Springer, Berlin, 2000).

    Book  Google Scholar 

  4. Becker, C. & Henry, C. R. Cluster size dependent kinetics for the oxidation of CO on Pd/MgO(100) model catalyst. Surf. Sci. 352, 457–462 (1996).

    Article  Google Scholar 

  5. Freund, H. J. Catalysis and surface science: What do we learn from studies of oxide-supported cluster model systems. Adv. Catal. 45, 333–384 (2000).

    Google Scholar 

  6. Shaikhutdinov, S. H. et al. Interaction of oxygen with palladium deposited on a thin alumina film. Surf. Sci. 501, 270–281 (2002).

    Article  Google Scholar 

  7. Mizsei, J., Voutilainen, J., Saukko, S. & Lantto, V. Structural transformations of ultra-thin sputtered Pd activator layers on glass and SnO2 surfaces. Thin Solid Films 391, 209–215 (2001).

    Article  Google Scholar 

  8. Westphalen, M., Kreibig, U., Rostalski, J., Luth, H. & Meissner, D. Metal cluster enhanced organic solar cells. Solar Energy Mater. Solar Cells 61, 97–105 (2000).

    Article  Google Scholar 

  9. Fukami, S., Ohno, A. & Tanaka, A. HRTEM and EELS studies of L1(0)-ordered FePt nano-clusters on MgO films prepared below 673 K. Mater. Trans. 45, 2012–2017 (2004).

    Article  Google Scholar 

  10. Mars, P. & van Krevelen, D. W. Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci. 3, 41–59 (1954).

    Article  Google Scholar 

  11. Hendriksen, B. L. M., Bobaru, S. C. & Frenken, J. W. M. Oscillatory CO oxidation on Pd(100) studied with in situ scanning tunnelling microscopy. Surf. Sci. 552, 229–242 (2004).

    Article  Google Scholar 

  12. Haberland, H. (ed.) Cluster of Atoms and Molecules (Springer, Berlin, 1994).

  13. Hammer, B. & Norskov, J. K. in Chemisorption and Reactivity on Supported Clusters and Thin Films (eds Lambert, R. M. & Pacchioni, G.) 331–351 (Kluwer, Dordrecht, 1997).

    Google Scholar 

  14. Moseler, M., Häkkinen, H., Barnett, R. N. & Landman, U. Structure and magnetism of neutral and anionic Pd clusters. Phys. Rev. Lett. 86, 2545–2548 (2001).

    Article  Google Scholar 

  15. Moseler, M., Häkkinen, H. & Landman, U. Supported magnetic nanoclusters: Softlanding of Pd clusters on a MgO(100) surface. Phys. Rev. Lett. 89, 176103 (2002).

    Article  Google Scholar 

  16. Abbet, S., Heiz, U., Häkkinen, H. & Landman, U. CO oxidation on a single Pd atom supported on magnesia. Phys. Rev. Lett. 86, 5950–5953 (2001).

    Article  Google Scholar 

  17. Abbet, S. et al. Identification of defect sites on MgO(100) thin films by decoration with Pd atoms and studying CO adsorption properties. J. Am. Chem. Soc. 123, 6172–6178 (2000).

    Article  Google Scholar 

  18. Eichler, A., Mittendorfer, F. & Hafner, J. Precursor-mediated adsorption of oxygen on the (111) surfaces of platinum-group metals. Phys. Rev. B 62, 4744–4755 (2000).

    Article  Google Scholar 

  19. Huber, B., Häkkinen, H., Landman, U. & Moseler, M. Oxidation of small gas phase Pd clusters: A density functional study. Comput. Mater. Sci. (in the press).

  20. Lundgren, E. et al. Two-dimensional oxide on Pd(111). Phys. Rev. Lett. 88, 246103 (2002).

    Article  Google Scholar 

  21. Todorova, M. et al. The Pd(100)-√5×√5R27-O surface oxide revisited. Surf. Sci. 541, 101–112 (2003).

    Article  Google Scholar 

  22. Heiz, U. & Bullock, E. L. Fundamental aspects of catalysis on supported metal clusters. Mater. Chem. 14, 564–577 (2004).

    Article  Google Scholar 

  23. Zang, C. J. & Hu, P. J. CO oxidation on Pd(100) and Pd(111): A comparative study of reaction pathways and reactivity at low and medium coverages. Am. Chem. Soc. 123, 1166–1172 (2001).

    Article  Google Scholar 

  24. Heiz, U., Sanchez, A. & Abbet, S. Tuning the oxidation of carbon monoxide using nanoassembled model catalysts. Chem. Phys. 262, 189–200 (2000).

    Article  Google Scholar 

  25. Barnett, R. N. & Landman, U. Born-Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of (H2O)2 . Phys. Rev. B 48, 2081–2097 (1993).

    Article  Google Scholar 

  26. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  27. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).

    Article  Google Scholar 

  28. Henkelman, G. & Jonsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  Google Scholar 

  29. Richards, F. M. The interpretation of protein structures: Total volume, group volume distributions and packing density. J. Mol. Biol. 82, 1–14 (1974).

    Article  Google Scholar 

  30. Tersoff, J. & Hamann, R. Theory of the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983).

    Article  Google Scholar 

Download references

Acknowledgements

We thank U. Heiz for the communication of unpublished results and fruitful discussions. This work was supported by the Deutsche Forschungsgemeinschaft within SPP 1153, the Fraunhofer MAVO for Multiscale Materials Modelling (MMM) and the Academy of Finland (AF). M.M. and H.H. acknowledge the DAAD-AF bilateral travel grant for the project ‘Supported Metal Clusters and Nanoparticles: Electronic Structure, Optical Properties and Nanocatalysis’. Computations were performed at NIC in Jülich, Germany, and at the CSC—the Finnish IT Center for Science in Espoo, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Moseler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and figure S1 (PDF 100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, B., Koskinen, P., Häkkinen, H. et al. Oxidation of magnesia-supported Pd-clusters leads to the ultimate limit of epitaxy with a catalytic function. Nature Mater 5, 44–47 (2006). https://doi.org/10.1038/nmat1533

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1533

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing