Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photomechanical actuation in polymer–nanotube composites

Abstract

For some systems, energy from an external source can trigger changes in the internal state of the structure, leading to a mechanical response much larger than the initial input. The ability to unlock this internal work in a solid-state structure is of key importance for many potential applications. We report a novel phenomenon of photo-induced mechanical actuation observed in a polymer–nanotube composite when exposed to infrared radiation. At small strains the sample tends to expand, when stimulated by photons, by an amount that is orders of magnitude greater than the pristine polymer. Conversely, at larger applied pre-strain, it will contract under identical infrared excitation. The behaviour is modelled as a function of orientational ordering of nanotubes induced by the uniaxial extension. It is thought that no other materials can display this continuously reversible response of so large a magnitude, making rubber nanocomposites important for actuator applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of apparatus, X-ray scattering image and the azimuthal intensity scan.
Figure 2: Response to IR radiation at different values of pre-strain.
Figure 3: Stress–strain variation under IR irradiation.
Figure 4: Summary of IR response.
Figure 5: Scheme of local and macroscopic strains, and the prediction of the actuation model.

Similar content being viewed by others

References

  1. Huber, J. E., Fleck, N. A. & Ashby, M. F. The selection of mechanical actuators based on performance indices. Proc. R. Soc. A 453, 2185–2205 (1997).

    Article  Google Scholar 

  2. Battacharya, K. Microstructure of Martensite (Oxford Univ. Press, UK, 2004).

    Google Scholar 

  3. Warner, M. & Terentjev, E. M. Liquid Crystal Elastomers (Oxford Univ. Press, UK, 2003).

    Google Scholar 

  4. Cumings, J. & Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000).

    Article  CAS  Google Scholar 

  5. Poncharal, P., Wang, Z. L., Ugarte, D. & de Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999).

    Article  CAS  Google Scholar 

  6. Williams, P. A. et al. Torsional response and stiffening of individual multiwalled carbon nanotubes. Phys. Rev. Lett. 89, 255502 (2002).

    Article  CAS  Google Scholar 

  7. Fennimore, A. M. et al. Rotational actuators based on carbon nanotubes. Nature 424, 408–410 (2003).

    Article  CAS  Google Scholar 

  8. Landi, B. J. et al. Single wall carbon nanotube-nafion composite actuators. Nano Lett. 2, 1329–1332 (2002).

    Article  CAS  Google Scholar 

  9. Koerner, H., Price, G., Pearce, N. A., Alexander, M. & Vaia, R. A. Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nature Mater. 3, 115–120 (2004).

    Article  CAS  Google Scholar 

  10. Tahhan, M., Truong, V. T., Spinks, G. M. & Wallace, G. G. Carbon nanotube and polyaniline composite actuators. Smart Mater. Struct. 12, 626–632 (2003).

    Article  CAS  Google Scholar 

  11. Naciri, J. et al. Nematic elastomer fiber actuator. Macromolecules 36, 8499–8505 (2003).

    Article  CAS  Google Scholar 

  12. Courty, S., Mine, J., Tajbakhsh, A. R. & Terentjev, E. M. Nematic elastomers with aligned carbon nanotubes: New electromechanical actuators. Europhys. Lett. 64, 654–660 (2003).

    Article  CAS  Google Scholar 

  13. Gorga, R. E. & Cohen, R. E. Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes. J. Polym. Sci. B 42, 2690–2702 (2004).

    Article  CAS  Google Scholar 

  14. Harris, P. J. F. Carbon nanotube composites. Int. Mater. Rev. 49, 31–43 (2004).

    Article  CAS  Google Scholar 

  15. Charlier, J. C. & Michenaud, J. P. Energetics of multilayered carbon tubules. Phys. Rev. Lett. 70, 1858–1861 (1993).

    Article  CAS  Google Scholar 

  16. Panyukov, S. V. & Rabin, Y. Statistical physics of polymer gels. Phys. Rep. 269, 1–131 (1996).

    Article  CAS  Google Scholar 

  17. Deutsch, M. Orientational order determination in liquid-crystals by X-ray diffraction. Phys. Rev. A 44, 8264–8270 (1991).

    Article  CAS  Google Scholar 

  18. Somoza, A. M., Sagui, C. & Roland, C. Liquid-crystal phases of capped carbon nanotubes. Phys. Rev. B 6308, 081403 (2001).

    Article  Google Scholar 

  19. Islam, M. F. et al. Nematic nanotube gels. Phys. Rev. Lett. 92, 088303 (2004).

    Article  CAS  Google Scholar 

  20. Jin, L., Bower, C. & Zhou, O. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 73, 1197–1199 (1998).

    Article  CAS  Google Scholar 

  21. Yakobson, B. I. & Bradec, C. J. & Bernholc, J. Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Courty, G. Lagubeau, A.R. Tajbakhsh, A.M. Squires, R. A. Vaia and H. Körner for useful discussions. We also thank A. Hayer for assistance with calibration of the light source. This work was carried out with the support of the EPSRC, EOARD (043018), the ESA-ESTEC (18351/04) and a CASE award from Makevale Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene M. Terentjev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information, equations and figures 1, 2 and 3 (PDF 177 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahir, S., Terentjev, E. Photomechanical actuation in polymer–nanotube composites. Nature Mater 4, 491–495 (2005). https://doi.org/10.1038/nmat1391

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1391

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing