Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct imaging and mesoscale modelling of phase transitions in a nanostructured fluid

Abstract

The kinetics of phase transitions is essential for understanding pattern formation in structured fluids1,2. These fluids play a key role in the morphogenesis of biological cells1,3,4,5, and they are very common in pharmaceutical products and plastic materials2. Until now, it has not been possible to follow phase transitions in structured fluids experimentally in real time and with high spatial resolution. Previous work1,2 has relied on static images and indirect experimental evidence from spatially averaging scattering experiments. Simulating the processes with computer models is a further challenge because of the multiple time and length scales involved6,7,8,9,10,11,12,13,14. Our movies based on in situ scanning force microscopy show the time sequence of the elementary steps of a phase transition in a fluid film of block copolymer from the cylinder to the perforated lamella phase. The movies validate a versatile simulation model that gives physical insight into the nature of the process. Our approach provides a means of improving the study and understanding of pattern formation processes in nanostructured fluids. We expect a significant impact on nanotechnology where block copolymers serve as self-organized templates for the synthesis of inorganic nanostructured materials15,16,17,18,19,20,21,22,23,24.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic phase diagram of a thin film of polystyrene-block-polybutadiene-block-polystyrene block copolymer26.
Figure 2: Nucleation and growth of a cluster of perforations forming a perforated lamella phase.
Figure 3: Annihilation of remaining patches of parallel cylinders in a surrounding perforated lamella phase.
Figure 4: Area A of the small grains of the parallel-cylinder phase displayed in Fig. 3, plotted as a function of time t.

Similar content being viewed by others

References

  1. Hyde, S. et al. The Language of Shape (Elsevier, Amsterdam, 1997).

    Google Scholar 

  2. Hamley, J. W. The Physics of Block Copolymers (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  3. Netz, R. R. & Schick, M. Pore formation and rupture in fluid bilayers. Phys. Rev. E 53, 3875–3885 (1996).

    Article  CAS  Google Scholar 

  4. Müller, M., Katsov, K. & Schick, M. New mechanism of membrane fusion. J. Chem. Phys. 116, 2342–2345 (2002).

    Article  Google Scholar 

  5. Dimova, R., Seifert, U., Pouligny, B., Förster, S. & Döbereiner, H.-G. Hyperviscous diblock copolymer vesicles. Eur. Phys. J. E 7, 241–250 (2002).

    CAS  Google Scholar 

  6. Fraaije, J. G. E. M. Dynamic density-functional theory for microphase separation kinetics of block-copolymer melts. J. Chem. Phys. 99, 9202–9212 (1993).

    Article  CAS  Google Scholar 

  7. Fraaije, J. G. E. M. et al. The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer. J. Chem. Phys. 106, 4260–4269 (1997).

    Article  CAS  Google Scholar 

  8. Sevink, G. J. A., Zvelindovsky, A. V., Vlimmeren, B. A. C. v., Maurits, M. N. & Fraaije, J. G. E. M. Dynamics of surface directed mesophase formation in block copolymer melts. J. Chem. Phys. 110, 2250–2256 (1999).

    Article  CAS  Google Scholar 

  9. Groot, R. D. & Warren, P. B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435 (1997).

    Article  CAS  Google Scholar 

  10. Qi, S. & Wang, Z.-G. Kinetics of phase transitions in weakly segregated block copolymers: pseudostable and transient states. Phys. Rev. E 55, 1682–1696 (1997).

    Article  CAS  Google Scholar 

  11. Matsen, M. W. Cylinder–gyroid epitaxial transtions in complex polymeric liquids. Phys. Rev. Lett. 80, 4470–4473 (1998).

    Article  CAS  Google Scholar 

  12. Matsen, M. W. Cylinder–sphere epitaxial transition in block copolymer melts. J. Chem. Phys. 114, 8165–8173 (2001).

    Article  CAS  Google Scholar 

  13. Nonomura, M. & Ohta, T. Kinetics of morphological transitions between mesophases. J. Phys. Condens. Matter 13, 9089–9112 (2001).

    Article  CAS  Google Scholar 

  14. Fredrickson, G. H., Ganesan, V. & Drolet, F. Field-theoretic computer simulation methods for polymers and complex fluids. Macromolecules 35, 16–39 (2002).

    Article  CAS  Google Scholar 

  15. Mansky, P., Chaikin, P. & Thomas, E. L. Monolayer films of diblock copolymer microdomains for nanolithographic applications. J. Mater. Sci. 30, 1987–1992 (1995).

    Article  CAS  Google Scholar 

  16. Cheng, J. Y. et al. Formation of a cobalt magnetic dot array via block copolymer lithography. Adv. Mater. 13, 1174 (2001).

    Article  CAS  Google Scholar 

  17. Zhao, D. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548 (1998).

    Article  CAS  Google Scholar 

  18. Edrington, A. C. et al. Polymer-based photonic crystals. Adv. Mater. 13, 421–425 (2001).

    Article  CAS  Google Scholar 

  19. Bockstaller, M., Kolb, R. & Thomas, E. L. Metallodielectric photonic crystals based on diblock copolymers. Adv. Mater. 13, 1783–1786 (2001).

    Article  CAS  Google Scholar 

  20. Park, M., Harrison, C., Chaikin, P. M., Register, R. A. & Adamson, D. H. Block copolymer lithography: periodic arrays of similar to 1011 holes in 1 square centimeter. Science 276, 1401–1404 (1997).

    Article  CAS  Google Scholar 

  21. Thurn-Albrecht, T. et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290, 2126–2129 (2000).

    Article  CAS  Google Scholar 

  22. Kim, H.-C. et al. A route to nanoscopic SiO2 posts via block copolymer templates. Adv. Mater. 13, 795 (2001).

    Article  CAS  Google Scholar 

  23. Lopes, W. A. & Jaeger, H. M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414, 735–738 (2001).

    Article  CAS  Google Scholar 

  24. Park, C., Yoon, J. & Thomas, E. L. Enabling nanotechnology with self assembled block copolymer patterns. Polymer 44, 6725–6760 (2003).

    Article  CAS  Google Scholar 

  25. Knoll, A., Magerle, R. & Krausch, G. Phase behavior in thin films of cylinder-forming block copolymers: experiments. J. Chem. Phys. 120, 1105–1116 (2004).

    Article  CAS  Google Scholar 

  26. Knoll, A. et al. Phase behavior in thin films of cylinder-forming block copolymers. Phys. Rev. Lett. 89, 035501 (2002).

    Article  CAS  Google Scholar 

  27. Horvat, A., Lyakhova, K. S., Sevink, G. J. A., Zvelindovsky, A. V. & Magerle, R. Phase behavior in thin films of cylinder-forming block copolymers: Mesoscale modelling. J. Chem. Phys. 120, 1117–1126 (2004).

    Article  CAS  Google Scholar 

  28. Sakurai, S. et al. Morphology Transition from cylindrical to lamellar microdomains of block copolymers. Macromolecules 26, 485–491 (1993).

    Article  CAS  Google Scholar 

  29. Morgenstern, K., Rosenfeld, G. & Comsa, G. Decay of two-dimensional Ag islands on Ag(111). Phys. Rev. Lett. 76, 2113–2116 (1996).

    Article  CAS  Google Scholar 

  30. Chen, W.-l., Sato, T. & Teramoto, A. Interfacial tension between coexisting isotropic and nematic phases for a lyotropic polymer liquid crystal: poly(n-hexyl isocyanate) solutions. Macromolecules 31, 6506–6510 (1998).

    Article  CAS  Google Scholar 

  31. Lyakhova, K. S., Horvat, A., Magerle, R., Sevink, G. J. A. & Zvelindovsky, A. V. Role of dissimilar interfaces in thin films of cylinder-forming block copolymers. J. Chem. Phys. 120, 1127–1137 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Hund and S. McGee for technical assistance. We acknowledge support from the Deutsche Forschungsgemeinschaft (SFB 481), the Nederlandse Organisatie voor Wetenschappelijk Onderzoek, and the Stichting Nationale Computer Faciliteiten. R.M. acknowledges support from the VolkswagenStiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Magerle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoll, A., Lyakhova, K., Horvat, A. et al. Direct imaging and mesoscale modelling of phase transitions in a nanostructured fluid. Nature Mater 3, 886–891 (2004). https://doi.org/10.1038/nmat1258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing