Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Directed assembly of controlled-misorientation bicrystals

Abstract

Grain boundaries play a vital role in determining materials behaviour1,2,3, and the nature of these intercrystalline interfaces is dictated by chemical composition4, processing history5, and geometry2,6 (misorientation and inclination). The interrelation among these variables and material properties may be systematically studied in bicrystals7. Conventional bicrystal fabrication offers control over these variables, but its ability to mimic grain boundaries in polycrystalline materials is ambiguous8,9,10,11,12. Here we describe a novel solid-state process for rapidly generating intercrystalline interfaces with controlled geometry and chemistry, applicable to a broad range of materials. A fine-grained polycrystalline layer, contacted by two appropriately misoriented single-crystal seeds, is consumed by an epitaxial solid-state transformation until the directed growth fronts impinge. The seed misorientations establish the geometry of the resulting intercrystalline boundaries, and the composition of the sacrificial polycrystalline layer establishes the chemistry of the boundaries and their adjacent grains. Results from a challenging model system, titanium-doped sapphire, illustrate the viability of the directed assembly technique for preparing high-quality bicrystals in both twist and tilt configurations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the assembly, growth and structural analysis of a controlled-misorientation twist boundary.
Figure 2: Illustration of the assembly, growth, and structural analysis of a controlled-misorientation tilt boundary.
Figure 3: Chemical analysis performed on the controlled-misorientation twist boundary shown in Fig. 1.

Similar content being viewed by others

References

  1. McLean, D. Grain Boundaries in Metals (Clarendon, Oxford, 1957).

    Google Scholar 

  2. Chaudhari, P. & Matthews, J.W. in Proc. Int. Conf. Structure and Properties of Grain Boundaries and Interfaces (North-Holland, Amsterdam, 1972).

    Google Scholar 

  3. Flewitt, P.E.J. & Wild, R.K. Grain Boundaries: Their Microstructure and Chemistry (Wiley, Chichester, 2001).

    Google Scholar 

  4. Joshi, A. & Stein, D.F. Impurity segregation to grain boundaries. (Auger spectroscopy). J. Test. Eval. (USA) 1, 202–208 (1973).

    Article  CAS  Google Scholar 

  5. American Society for Metals. Materials Science Division. Seminar Committee & Metallurgical Society of AIME. in 1979 ASM Materials Science Seminar (American Society for Metals, Metals Park, Ohio, 1980).

  6. Bollmann, W. Crystal Defects and Crystalline Interfaces (Springer, Berlin, 1970).

    Book  Google Scholar 

  7. Chalmers, B. The influence of the difference of orientation of two crystals on the mechanical effect of their boundary. Proc. R. Soc. Lond. A 162, 120–127 (1937).

    Article  CAS  Google Scholar 

  8. Morris, P.A. & Coble, R.L. Grain boundary structures in high-purity Al2O3 bicrystals grown from the melt. Mater. Res. Soc. Symp. Proc. 60, 281–289 (1986).

    Article  CAS  Google Scholar 

  9. Parker, H.S. & Harding, C.A. Vapor growth of Al2O3 bicrystals. J. Am. Ceram. Soc. (USA) 53, 583–585 (1970).

    Article  CAS  Google Scholar 

  10. Davis, M.P. Pressure sintered alumina bicrystals. J. Am. Ceram. Soc. (USA) 47, 463–464 (1964).

    Article  CAS  Google Scholar 

  11. Hoche, T. & Ruhle, M. Effect of calcium doping on the atomistic structure of the (1104) twin boundary in alumina. J. Am. Ceram. Soc. (USA) 79, 1961–1966 (1996).

    Article  Google Scholar 

  12. Ikuhara, Y. et al. Dislocation structures of low-angle and near-Σ3 grain boundaries in alumina bicrystals. J. Am. Ceram. Soc. (USA) 86, 595–602 (2003).

    Article  CAS  Google Scholar 

  13. Wolf, H. et al. in Metastable, Mechanically Alloyed and Nanocrystalline Materials: ISMANAM-99: Proc. Int. Symp. Metastable, Mechanically Alloyed and Nanocrystalline Materials (eds Eckert, J., Schlèorb, H. & Schultz, L.) 847–852 (Trans Tech Publications, Ütikon-Zürich, 2000).

    Google Scholar 

  14. Kodiyalam, S. et al. Grain boundaries in gallium arsenide nanocrystals under pressure: a parallel molecular-dynamics study. Phys. Rev. Lett. (USA) 86, 55–58 (2001).

    Article  CAS  Google Scholar 

  15. Randle, V. The Measurement of Grain Boundary Geometry (Institute of Physics, Bristol, 1993).

    Google Scholar 

  16. Sutton, A.P. & Vitek, V. On the structure of tilt grain boundaries in cubic metals. I. Symmetrical tilt boundaries. Phil. Trans. R. Soc. Lond. A, 309, 1–36 (1983).

    Article  CAS  Google Scholar 

  17. Kinoshita, M. Boundary migration of single crystal in polycrystalline alumina. Yogyo-Kyokai-Shi 82, 295–296 (1974).

    Article  CAS  Google Scholar 

  18. Matsuzawa, S. & Mase, S. Method for producing singel crystal of ferrite. US Patent 4,339,301 (1982).

  19. Imaeda, M. & Matsuzawa, S. Growth of yttrium iron garnet single crystal by solid-solid reaction. 1st Japan Int. SAMPE Symp. 419–424 (1989).

  20. Hirao, K., Nagaoka, T., Brito, M.E. & Kanzaki, S. Microstructure control of silicon-nitride by seeding with rodlike beta-silicon nitride particles. J. Am. Ceram. Soc. (USA) 77, 1857–1862 (1994).

    Article  CAS  Google Scholar 

  21. Seabaugh, M.M., Kerscht, I.H. & Messing, G.L. Texture development by templated grain growth in liquid phase sintered α-alumina. J. Am. Ceram. Soc. (USA) 80, 1181–1188 (1997).

    Article  CAS  Google Scholar 

  22. Scott, W.D. Fabrication of bicrystals of aluminum oxide. Trans. Brit. Ceram. Soc. 66, 315–318 (1967).

    CAS  Google Scholar 

  23. Kim, D.-Y., Wiederhorn, S.M., Hockey, B.J., Handwerker, C.A. & Blendell, J.E. Stability and surface energies of wetted grain boundaries in aluminum oxide. J. Am. Ceram. Soc. (USA) 77, 444–453 (1994).

    Article  CAS  Google Scholar 

  24. Mar, H.Y.B. & Scott, W.D. Fracture induced in Al2O3 bicrystals by anisotropic thermal expansion. J. Am. Ceram. Soc. (USA) 53, 555–558 (1970).

    Article  CAS  Google Scholar 

  25. Bagley, R.D., Cutler, I.B. & Johnson, D.L. Effect of TiO2 on initial sintering of Al2O3 . J. Am. Ceram. Soc. (USA) 53, 136–141 (1970).

    Article  CAS  Google Scholar 

  26. Brook, R.J. Effect of TiO2 on the initial sintering of Al2O3 . J. Am. Ceram. Soc. (USA) 55, 114–115 (1972).

    Article  CAS  Google Scholar 

  27. Phillips, D.S., Mitchell, T.E. & Heuer, A.H. Precipitation in star sapphire. III. Chemical effects accompanying precipitation. Phil. Mag. A, Phys. Condens. Matter Defects Mech. Prop. (UK) 42, 417–432 (1980).

    CAS  Google Scholar 

  28. Morgan, P.E.D. & Koutsoutis, M.S. Phase studies concerning sintering in aluminas doped with Ti4+. J. Am. Ceram. Soc. (USA) 68, C156–158 (1985).

    CAS  Google Scholar 

  29. Ikegami, T., Kotani, K. & Eguchi, K. Some roles of MgO and TiO2 in densification of a sinterable alumina. J. Am. Ceram. Soc. (USA) 70, 885–890 (1987).

    Article  CAS  Google Scholar 

  30. Powers, J.D. & Glaeser, A.M. High-temperature healing of cracklike flaws in titanium ion-implanted sapphire. J. Am. Ceram. Soc. (USA) 76, 2225–2234 (1993).

    Article  CAS  Google Scholar 

  31. Horn, D.S. & Messing, G.L. Anisotropic grain growth in TiO2-doped alumina. Mater. Sci. Eng. A 195A, 169–178 (1995).

    Article  Google Scholar 

  32. Kebbede, A., Messing, G.L. & Carim, A.H. Grain boundaries in titania-doped α-alumina with anisotropic microstructure. J. Am. Ceram. Soc. (USA) 80, 2814–2820 (1997).

    Article  CAS  Google Scholar 

  33. Powers, J.D. Titanium Effects on Microstructure Development in Alumina. Thesis, Univ. California, Berkeley, 1997.

    Google Scholar 

  34. Jones, T.P., Coble, R.L. & Mogab, C.J. Defect diffusion in single crystal aluminum oxide. J. Am. Ceram. Soc. (USA) 52, 331–334 (1969).

    Article  CAS  Google Scholar 

  35. Schober, T. & Balluffi, R.W. Dislocations in symmetric high angle (001) tilt boundaries in gold. Phys. Status Solidi 44, 115–126 (1971).

    Article  CAS  Google Scholar 

  36. Ravishankar, N. & Carter, C.B. Glass/crystal interfaces in liquid-phase sintered materials. Interf. Sci. 8, 295–304 (2000).

    Article  CAS  Google Scholar 

  37. Marks, R.A. Fabrication of Controlled-Misorientation Alumina Grain Boundaries and Implications of the Triple-Junction Equilibrium Conditions. Thesis, Univ. California, Berkeley, 2003.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the Department of Energy Contract No. DE-AC03-76SF00098. Access to National Center for Electron Microscopy is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas M. Glaeser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marks, R., Taylor, S., Mammana, E. et al. Directed assembly of controlled-misorientation bicrystals. Nature Mater 3, 682–686 (2004). https://doi.org/10.1038/nmat1214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing