Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Predicting the structure of screw dislocations in nanoporous materials

Abstract

Extended microscale crystal defects, including dislocations and stacking faults, can radically alter the properties of technologically important materials. Determining the atomic structure and the influence of defects on properties remains a major experimental and computational challenge. Using a newly developed simulation technique, the structure of the 1/2a <100> screw dislocation in nanoporous zeolite A has been modelled. The predicted channel structure has a spiral form that resembles a nanoscale corkscrew. Our findings suggest that the dislocation will enhance the transport of molecules from the surface to the interior of the crystal while retarding transport parallel to the surface. Crucially, the dislocation creates an activated, locally chiral environment that may have enantioselective applications. These predictions highlight the influence that microscale defects have on the properties of structurally complex materials, in addition to their pivotal role in crystal growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AFM image of growth spirals on the {100} surface of synthetic zeolite A taken from ref. 21.
Figure 2: Topology of zeolite A based on the silica framework.
Figure 3: Views of three eight-ring structures in zeolite A.
Figure 4: Channel systems in perfect and dislocated zeolite A.

Similar content being viewed by others

References

  1. Lai, Z.P. et al. Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300, 456–460 (2003).

    CAS  Google Scholar 

  2. Terasaki, O., Thomas, J.M. & Ramdas, S. A new type of stacking-fault in zeolites - presence of a coincidence boundary (square-root 13. square-root 13 R32.2-degrees superstructure) perpendicular to the tunnel direction in zeolite-L. J. Chem. Soc. Chem. Commun. 216–217 (1984).

  3. Campbell, B.J. & Cheetham, A.K. Linear framework defects in zeolite mordenite. J. Phys. Chem. 106, 57–62 (2002).

    Article  CAS  Google Scholar 

  4. Sinclair, J.E. Improved atomistic model of a bcc dislocation core. J. Appl. Phys. 42, 5321–5329 (1971).

    Article  CAS  Google Scholar 

  5. Gehlen, P.C., Hirth, J.P., Hoagland, R.G. & Kanninen, M.F. A new representation of the strain field assoceated with the cube-edge dislocation of a-iron. J. Appl. Phys. 43, 3921–3933 (1972).

    Article  Google Scholar 

  6. Ismail-Beigi, S. & Arias, T.A. Ab initio study of screw dislocations in Mo and Ta: a new picture of plasticity in bcc transition metals. Phys. Rev. Lett. 84, 1499–1502 (2000).

    Article  CAS  Google Scholar 

  7. Yang, L.H., Söderlind, P. & Moriarty, J.A. Accurate atomistic simulation of (a/2)&lt;111&gt; screw dislocations and other defects in bcc tantalum. Phil. Mag. A 81, 1355–1385 (2001).

    Article  CAS  Google Scholar 

  8. Kaplan, T., Liu, F., Mostoller, M., Chisholm, M.F. & Milman, V. First-principles study of impurity segregation in edge dislocations in Si. Phys. Rev. B 61, 1674–1676 (2000).

    Article  CAS  Google Scholar 

  9. Liu, F., Mostoller, M., Chisholm, M.F. & Kaplan, T. Electronic and elastic properties of edge dislocations in Si. Phys. Rev. B 51, 17192–17195 (1995).

    Article  CAS  Google Scholar 

  10. Bigger, J.R.K. et al. Atomic and electronic structures of the 90° partial dislocation in silicon. Phys. Rev. Lett. 69, 2224–2227 (1992).

    Article  CAS  Google Scholar 

  11. Heggie, M.I., et al. Glide dislocations in dimond: first-principles calculations of similarities with and differences from silicon and the effects of hydrogen. J. Phys. Condens. Matter 14, 12689–12696 (2002).

    Article  CAS  Google Scholar 

  12. Martsinovich, N. Heggie, M.I. & Ewels, C.P. First-principles calculations on the structure of hydrogen aggregates in silicon and diamond. J. Phys. Condens. Matter 15, S2815–S2824 (2003).

    Article  CAS  Google Scholar 

  13. Rabier, J., Soullard, J. & Puls, M.P. Atomic calculations of point-defect interactions with an edge dislocation in NiO. Phil. Mag. A 61, 99–108 (1990).

    Article  CAS  Google Scholar 

  14. Rabier, J. & Puls, M.P. On the core structures of edge dislocations in NaCl and MgO. Consequences for the core configurations of dislocation dipoles. Phil. Mag. A 59, 821–842 (1989).

    Article  CAS  Google Scholar 

  15. Puls, M.P., Woo, C.H. & Norgett, M.J. Shell-model calculations of interaction energies between point defects and dislocations in ionic crystals. Phil. Mag. 36, 1457–1472 (1977).

    Article  CAS  Google Scholar 

  16. Puls, M.P. & Norgett, M.J. Atomic calculation of the core structure and Peierls energy of an (a/2)[110] edge dislocation in MgO. J. Appl. Phys. 47, 466–477 (1976).

    Article  CAS  Google Scholar 

  17. Puls, M.P. Vacancy-dislocation interactions energies in MgO A re-analysis. Phil. Mag. A 47, 497–513 (1983).

    Article  CAS  Google Scholar 

  18. Puls, M.P. Vacancy-dislocation interaction energies in MgO. Phil. Mag. A 41, 353–368 (1980).

    Article  CAS  Google Scholar 

  19. Hoagland, R.G., Hirth, J.P. & Gehlen, P.C. Atomic simulation of the dislocation core structure and Peirels stress in alkali halide. Phil. Mag. 34, 413–439 (1976).

    Article  CAS  Google Scholar 

  20. Watson, G.W., Kelsey, E.T. & Parker, S.C. Atomistic simulation of screw dislocations in rock salt structured materials. Phil. Mag. A 79, 527–536 (1999).

    Article  CAS  Google Scholar 

  21. Dumrul, S., Bazzana, S., Warzywoda, J., Biederman, R.R. & Sacco, A. Imaging of crystal growth-induced fine surface features in zeolite A by atomic force microscopy. Micropor. Mesopor. Mater. 54, 79–88 (2002).

    Article  CAS  Google Scholar 

  22. Nabarro, F.R.N. Theory of Dislocations (Oxford Univ. Press, Oxford, 1967).

    Google Scholar 

  23. Binder, G., Scandella, L., Schumacher, A., Kruse, N. & Prins, R. Microtopographic and molecular scale observations of zeolite surface structures: Atomic force microscopy on natural heulandite. Zeolites 16, 2–6 (1996).

    Article  CAS  Google Scholar 

  24. Agger, J.R., Pervaiz, N., Cheetham, A.K. & Anderson, M.W. Crystallization in zeolite A studied by atomic force microscopy. J. Am. Chem. Soc. 120, 10754–10759 (1998).

    Article  CAS  Google Scholar 

  25. Agger, J.R., Hanif, N. & Anderson, M.W. Fundamental zeolite crystal growth rates from simulation of atomic force micrographs. Angew. Chem. Int. Edn 40, 4065–4067 (2001).

    Article  CAS  Google Scholar 

  26. Faux, D.A., Smith, W. & Forester, T.R. Molecular dynamics studies of hydrated and dehydrated Na+- zeolite-4A. J. Phys. Chem. B 101, 1762–1768 (1997).

    Article  CAS  Google Scholar 

  27. Slater, B., Titiloye, J.O., Higgins, F.M. & Parker, S.C. Atomistic simulation of zeolite surfaces. Curr. Opin. Solid State Mater. Sci. 5, 417–424 (2001).

    Article  CAS  Google Scholar 

  28. Smit, B. & Siepmann, J.I. Simulating the adsorption of alkanes in zeolites. Science 264, 1118–1120 (1994).

    Article  CAS  Google Scholar 

  29. Auerbach, S.M. Theory and simulation of jump dynamics, diffusion and phase equilibrium in nanopores. Int. Rev. Phys. Chem. 19, 155–198 (2000).

    Article  CAS  Google Scholar 

  30. Henson, N.J., Cheetham, A.K. & Gale, J.D. Theoretical Calculations on Silica Frameworks and Their Correlation with Experiment. Chem. Mater. 6, 1647–1650 (1994).

    Article  CAS  Google Scholar 

  31. Poirier, J.P. Rheology of ices: a key to the tectonics of the ice moons of Jupiter and Saturn. Nature 299, 683–688 (1982).

    Article  Google Scholar 

  32. Nelson, J. Growth mechanisms to explain the primary and secondary habits of snow crystals. Phil. Mag. A 81, 2337–2373 (2001).

    Article  CAS  Google Scholar 

  33. Li, L., Raterron, P., Weider, D. & Chen, J. Olivine flow mechanisms at 8 GPa. Phys. Earth Planet. Inter. 138, 113–129 (2003).

    Article  CAS  Google Scholar 

  34. Sanders, M.J., Leslie, M. & Catlow, C.R.A. Interatomic potentials for SiO2 . JCS Chem. Commun. 1271–1273 (1984).

  35. Wolf, D., Keblinski, P., Phillpot, S.R. & Eggebrecht, J. Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation. J. Chem. Phys. 110, 8254–8282 (1999).

    Article  CAS  Google Scholar 

  36. Gale, J.D. & Rohl, A.L. The general utility lattice program (GULP). Mol. Simulat. 29, 291–341 (2003).

    Article  CAS  Google Scholar 

  37. Cheetham, A.K., Eddy, M.M., Jefferson, D.A. & Thomas, J.M. A Study of Si,Al ordering in thallium zeolite-a by powder neutron-diffraction. Nature 299, 24–26 (1982).

    Article  CAS  Google Scholar 

  38. Bell, R.G., Jackson, R.A. & Catlow, C.R.A. Lowenstein rule in zeolite-a — a computational study. Zeolites 12, 870–871 (1992).

    Article  CAS  Google Scholar 

  39. Hull, D. & Bacon, D.J. Introduction to Dislocations (Pergamon, Oxford, 1984).

    Google Scholar 

  40. Steeds, J.W. Introduction to Anisotropic Elasticity Theory of Dislocations (Clarendon, Oxford, 1973).

    Google Scholar 

  41. Sinclair, J.E., Gehlen, P.C., Hoagland, R.G. & Hirth, J.P. Flexible boundary conditions and nonlinear geometric effects in atomic dislocation modeling. J. Appl. Phys. 49, 3890–3897 (1978).

    Article  CAS  Google Scholar 

  42. Hirth, J.P. Anisotropic elastic solutions for line force arrays. Scripta Metall. 6, 535–540 (1972).

    Article  Google Scholar 

  43. Rao, S., Hernandez, D., Simmonds, J.P., Parthasarathy, T.A. & Woodward, C. Green's function boundary conditions in two-dimensional and three-dimensional atomistic simulations of dislocations. Phil. Mag. A 77, 231–256 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Al Sacco Jr and colleagues for the AFM image shown in Fig. 1. B.S. wishes to acknowledge useful discussions with Jonathan Agger. We thank EPSRC for funding for local computer resources (GR/S06233/01), access to the UK capability computing resource (HPCx) via the Materials Chemistry Consortium (GR/S13422/01) and a studentship to A.M.W. J.D.G. gratefully acknowledges the support of the Government of Western Australia through a Premier's Research Fellowship. K.W. thanks the Royal Society for support under their University Research Fellowship scheme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew M. Walker or Ben Slater.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Figures

Fig. S1, Fig. S2 and Table S1 (PDF 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, A., Slater, B., Gale, J. et al. Predicting the structure of screw dislocations in nanoporous materials. Nature Mater 3, 715–720 (2004). https://doi.org/10.1038/nmat1213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing