Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fracture of nanoporous thin-film glasses

Abstract

Fracture of nanoporous thin-film glasses is a significant challenge for the integration of these mechanically fragile materials in emerging microelectronic and biological technologies. In particular, the integration of these materials has been limited by accelerated cracking rates in moist environments leading to premature failure. Here, we demonstrate how cracking is affected by aqueous solution chemistry, and reveal anomalously high crack-growth rates in hydrogen peroxide solutions frequently encountered during device processing or when in use. Kinetic mechanisms involving the transport and steric hindrance of reactive hydrogen peroxide molecules at the crack tip are proposed. Thin-film design strategies that involve energy dissipation by local plasticity in thin ductile layers on increasing the resistance to cracking of nanoporous glass layers is demonstrated. Understanding how aqueous solutions influence cracking and associated device reliability is a fundamental challenge for these promising materials to be viable candidates for new technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified molecular reaction mechanisms.
Figure 2: Accelerated crack-growth behaviour.
Figure 3: The effect of increasing hydrogen peroxide concentration.
Figure 4: Crack-flank-opening displacements (δ) at 0.4 nm behind the crack tip.
Figure 5

Similar content being viewed by others

References

  1. Hedrick, J. et al. Templating nanoporosity in thin-film dielectric insulators. Adv. Mater. 10, 1049–1053 (1998).

    Article  CAS  Google Scholar 

  2. Desai, T., Hansford, D., Leoni, L., Essenpreis, M. & Ferrari, M. Nanoporous anti-fouling silicon membranes for biosensor applications. Biosens. Bioelectron. 15, 453–462 (2000).

    Article  CAS  Google Scholar 

  3. Dabrowski, A. Adsorption - from theory to practice. Adv. Colloid Interface Sci. 93, 135–224 (2001).

    Article  CAS  Google Scholar 

  4. Nguyen, C. et al. Low-dielectric, nanoporous organosilicate films prepared via inorganic/organic polymer hybrid templates. Chem. Mater. 11, 3080–3085 (1999).

    Article  CAS  Google Scholar 

  5. Nguyen, C. et al. Hyperbranched polyesters as nanoporosity templating agents for organosilicates. Macromolecules 33, 4281–4284 (2000).

    Article  CAS  Google Scholar 

  6. Lane, M.W., Snodgrass, J.M. & Dauskardt, R.H. Environmental effects on interfacial adhesion. Microelectron. Reliab. 41, 1615–1624 (2001).

    Article  Google Scholar 

  7. Lane, M., Dauskardt, R.H., Krishna, N. & Hashim, I. Adhesion and reliability of copper interconnects with Ta and TaN barrier layers. J. Mater. Res. 15, 203–211 (2000).

    Article  CAS  Google Scholar 

  8. Dauskardt, R.H., Lane, M., Ma, Q. & Krishna, N. Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61, 141–162 (1998).

    Article  Google Scholar 

  9. Cook, R. & Liniger, E. Stress-corrosion cracking of low-dielectric-constant spin-on-glass thin films. J. Electrochem. Soc. 146, 4439–4448 (1999).

    Article  CAS  Google Scholar 

  10. Wiederhorn, S.M. Influence of water vapor on crack propagation in soda-lime glass. J. Am. Ceram. Soc. 50, 407–414 (1967).

    Article  CAS  Google Scholar 

  11. Wiederhorn, S.M. & Bolz, L.H. Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc. 53, 543–548 (1970).

    Article  CAS  Google Scholar 

  12. Hillig, W.B. & Charles, R.J. in Proceedings of the Second Berkeley International Materials Conference (ed. Zackey, V.F.) 682–705 (Wiley, Univ. California, Berkeley, 1965).

    Google Scholar 

  13. Wiederhorn, S.M. A chemical interpretation of static fatigue. J. Am. Ceram. Soc. 55, 81–85 (1972).

    Article  CAS  Google Scholar 

  14. Michalske, T.A. & Freiman, S.W. A molecular interpretation of stress corrosion in silica. Nature 295, 511–512 (1982).

    Article  CAS  Google Scholar 

  15. Bhatnagar, A., Hoffman, M.J. & Dauskardt, R.H. Fracture and subcritical crack-growth behavior of Y-Si-Al-O-N glasses and Si3N4 ceramics. J. Am. Ceram. Soc. 83, 585–596 (2000).

    Article  CAS  Google Scholar 

  16. Dill, S.J., Bennison, S.J. & Dauskardt, R.H. Subcritical crack-growth behavior of borosilicate glass under cyclic loads: Evidence of a mechanical fatigue effect. J. Am. Ceram. Soc. 80, 773–776 (1997).

    Article  CAS  Google Scholar 

  17. Crichton, S.N., Tomozawa, M., Hayden, J.S., Suratwala, T.I. & Campbell, J.H. Subcritical crack growth in a phosphate laser glass. J. Am. Ceram. Soc. 82, 3097–3104 (1999).

    Article  CAS  Google Scholar 

  18. Wiederhorn, S.M., Johnson, H., Heuer, A.H. & Diness, A.M. Fracture of glass in vacuum. Am. Ceram. Soc. Bull. 52, 336–341 (1973).

    Google Scholar 

  19. Cook, R.F. & Liniger, E.G. Kinetics of indentation cracking in glass. J. Am. Ceram. Soc. 76, 1096–1105 (1993).

    Article  CAS  Google Scholar 

  20. Michalske, T.A. & Bunker, B.C. A chemical kinetics model for glass fracture. J. Am. Ceram. Soc. 76, 2613–2618 (1993).

    Article  CAS  Google Scholar 

  21. Williams, J.G. & Marshall, G.P. Environmental crack and craze growth phenomena in polymers. Proc. R. Soc. Lond. A 342, 55–77 (1975).

    Article  CAS  Google Scholar 

  22. Chan, M.K.V. & Williams, J.G. Slow stable crack-growth in high-density polyethylenes. Polymer 24, 234–244 (1983).

    Article  CAS  Google Scholar 

  23. Lane, M. et al. in Materials Reliability in Microelectronics VII Symposium (eds Clement, J. J., Keller, R. R., Krisch, K. S., Sanchez, J. E. Jr, & Suo, Z.) 21–26 (Materials Research Society, San Francisco, California, 1997).

    Google Scholar 

  24. Snodgrass, J.M., Pantelidis, D., Jenkins, M.L., Bravman, J.C. & Dauskardt, R.H. Subcritical debonding of polymer/silica interfaces under monotonic and cyclic loading. Acta Mater. 50, 2395–2411 (2002).

    Article  CAS  Google Scholar 

  25. Kook, S.Y. & Dauskardt, R.H. Moisture-assisted subcritical debonding of a polymer/metal interface. J. Appl. Phys. 91, 1293–1303 (2002).

    Article  CAS  Google Scholar 

  26. Lane, M., Dauskardt, R.H., Vainchtein, A. & Gao, H. Plasticity contributions to interface adhesion in thin-film interconnect structures. J. Mater. Res. 15, 2758–2769 (2000).

    Article  CAS  Google Scholar 

  27. Wiederhorn, S.M., Freiman, S.W., Fuller, E.R. Jr & Simmons, C.J. Effects of water and other dielectrics on crack growth. J. Mater. Sci. 17, 3460–3478 (1982).

    Article  CAS  Google Scholar 

  28. Wiederhorn, S.M. & Johnson, H. Effect of electrolyte pH on crack propagation in glass. J. Am. Ceram. Soc. 56, 192–197 (1973).

    Article  CAS  Google Scholar 

  29. White, G.S., Freiman, S.W., Weiderhorn, S.M. & Coyle, T.D. Effects of counterions on crack growth in vitreous silica. J. Am. Ceram. Soc. 70, 891–895 (1987).

    Article  CAS  Google Scholar 

  30. Michalske, T.A. & Bunker, B.C. Steric effects in stress corrosion fracture of glass. J. Am. Ceram. Soc. 70, 780–784 (1987).

    Article  CAS  Google Scholar 

  31. Bird, R.B., Stewart, W.E. & Lightfoot, E.N. Transport Phenomena (Wiley, New York, 2002).

    Google Scholar 

  32. Lane, M., Dauskardt, R., Qing, M., Fujimoto, H. & Krishna, N. in Materials Reliability in Microelectronics IX. Symposium 251–256 (Materials Research Society, San Francisco, California, 1999).

    Google Scholar 

  33. Wiederhorn, S.M., Fuller, E.R.J. & Thomson, R. Micromechanisms of crack growth in ceramics and glasses in corrosive environments. Met. Sci. 14, 450–458 (1980).

    Article  CAS  Google Scholar 

  34. Tuckerman, M., Marx, D. & Parrinello, M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417, 925–929 (2002).

    Article  CAS  Google Scholar 

  35. Kerr, J.A. Bond dissociation energies by kinetic methods. Chem. Rev. 66, 465–500 (1966).

    Article  CAS  Google Scholar 

  36. Strohband, S. & Dauskardt, R.H. Interface separation in residually-stressed thin-film structures. Interface Sci. 11, 309–17 (2003).

    Article  Google Scholar 

  37. Toivola, Y., Thurn, J. & Cook, R.F. Structural, electrical, and mechanical properties development during curing of low-k hydrogen silsesquioxane films. J. Electrochem. Soc. 149, F9–F17 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy, under Contract No. D3-FG03-95ER45543. Materials were supplied by JSR (Tsukuba, Ibaraki, Japan) and LETI (Grenoble, France) and the authors gratefully acknowledge the assistance of M. Patz (JSR) and S. Maitrejean (LETI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold H. Dauskardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guyer, E., Dauskardt, R. Fracture of nanoporous thin-film glasses. Nature Mater 3, 53–57 (2004). https://doi.org/10.1038/nmat1037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1037

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing