Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Toughening oxide glasses through paracrystallization

Abstract

Glasses, unlike crystals, are intrinsically brittle due to the absence of microstructure-controlled toughening, creating fundamental constraints for their technological applications. Consequently, strategies for toughening glasses without compromising their other advantageous properties have been long sought after but elusive. Here we report exceptional toughening in oxide glasses via paracrystallization, using aluminosilicate glass as an example. By combining experiments and computational modelling, we demonstrate the uniform formation of crystal-like medium-range order clusters pervading the glass structure as a result of paracrystallization under high-pressure and high-temperature conditions. The paracrystalline oxide glasses display superior toughness, reaching up to 1.99 ± 0.06 MPa m1/2, surpassing any other reported bulk oxide glasses, to the best of our knowledge. We attribute this exceptional toughening to the excitation of multiple shear bands caused by a stress-induced inverse transformation from the paracrystalline to amorphous states, revealing plastic deformation characteristics. This discovery presents a potent strategy for designing highly damage-tolerant glass materials and emphasizes the substantial influence of atomic-level structural variation on the properties of oxide glasses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure factors and pair distribution functions of the grossular samples.
Fig. 2: Direct structural identification of paracrystalline grossular.
Fig. 3: Mechanical properties of the paracrystalline grossular.
Fig. 4: Toughening mechanism for paracrystalline oxide glass.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.

Code availability

The software used for data analysis is available from H.S. upon request.

References

  1. Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011).

    CAS  Google Scholar 

  2. Yue, Y. et al. Hierarchically structured diamond composite with exceptional toughness. Nature 582, 370–374 (2020).

    CAS  Google Scholar 

  3. Homeny, J., Nelson, G. G., Paulik, S. W. & Risbud, S. H. Comparison of the properties of oxycarbide and oxynitride glasses. J. Am. Ceram. Soc. 70, C-114–C-116 (1987).

    Google Scholar 

  4. Rouxel, T. Fracture surface energy and toughness of inorganic glasses. Scr. Mater. 137, 109–113 (2017).

    CAS  Google Scholar 

  5. Guo, Y., Li, J., Zhang, Y., Feng, S. & Sun, H. High-entropy R2O3-Y2O3-TiO2-ZrO2-Al2O3 glasses with ultrahigh hardness, Young’s modulus, and indentation fracture toughness. iScience 24, 102735 (2021).

    CAS  Google Scholar 

  6. Hofmann, D. C. et al. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085–1089 (2008).

    CAS  Google Scholar 

  7. Serbena, F. C., Mathias, I., Foerster, C. E. & Zanotto, E. D. Crystallization toughening of a model glass-ceramic. Acta Mater. 86, 216–228 (2015).

    CAS  Google Scholar 

  8. Amini, A., Khavari, A., Barthelat, F. & Ehrlicher, A. J. Centrifugation and index matching yield a strong and transparent bioinspired nacreous composite. Science 373, 1229–1234 (2021).

    CAS  Google Scholar 

  9. Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).

    CAS  Google Scholar 

  10. Hirata, A. et al. Direct observation of local atomic order in a metallic glass. Nat. Mater. 10, 28–33 (2011).

    CAS  Google Scholar 

  11. Treacy, M. M. J. & Borisenko, K. B. The local structure of amorphous silicon. Science 335, 950–953 (2012).

    CAS  Google Scholar 

  12. Yang, Y. et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature 592, 60–64 (2021).

    CAS  Google Scholar 

  13. Tang, H. et al. Synthesis of paracrystalline diamond. Nature 599, 605–610 (2021).

    CAS  Google Scholar 

  14. Shang, Y. et al. Ultrahard bulk amorphous carbon from collapsed fullerene. Nature 599, 599–604 (2021).

    CAS  Google Scholar 

  15. Demetriou, M. D. et al. A damage-tolerant glass. Nat. Mater. 10, 123–128 (2011).

    CAS  Google Scholar 

  16. Zhang, F. et al. Polymorphism in a high-entropy alloy. Nat. Commun. 8, 15687 (2017).

    CAS  Google Scholar 

  17. Lan, S. et al. A medium-range structure motif linking amorphous and crystalline states. Nat. Mater. 20, 1347–1352 (2021).

    CAS  Google Scholar 

  18. Kapoor, S., Wondraczek, L. & Smedskjaer, M. M. Pressure-induced densification of oxide glasses at the glass transition. Front. Mater. 4, 1 (2017).

    Google Scholar 

  19. Wondraczek, L. et al. Advancing the mechanical performance of glasses: perspectives and challenges. Adv. Mater. 34, 2109029 (2022).

    CAS  Google Scholar 

  20. Pekin, T. C. et al. Direct measurement of nanostructural change during in situ deformation of a bulk metallic glass. Nat. Commun. 10, 2445 (2019).

    Google Scholar 

  21. Pan, J., Ivanov, Y. P., Zhou, W. H., Li, Y. & Greer, A. L. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass. Nature 578, 559–562 (2020).

    CAS  Google Scholar 

  22. Ritchie, R. O. Toughening materials: enhancing resistance to fracture. Philos. Trans. R. Soc. A 379, 20200437 (2021).

    CAS  Google Scholar 

  23. Wang, H. et al. Effect of pressure on nucleation and growth in the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk glass-forming alloy investigated using in situ X-ray diffraction. Phys. Rev. B 68, 184105 (2003).

    Google Scholar 

  24. Fuss, T., Ray, C. S., Kitamura, N., Makihara, M. & Day, D. E. Pressure induced nucleation in a Li2O·2SiO2 glass. J. Non Cryst. Solids 318, 157–167 (2003).

    CAS  Google Scholar 

  25. Guerette, M. et al. Structure and properties of silica glass densified in cold compression and hot compression. Sci. Rep. 5, 15343 (2015).

    CAS  Google Scholar 

  26. To, T. et al. Bond switching in densified oxide glass enables record-high fracture toughness. ACS Appl. Mater. Interfaces 13, 17753–17765 (2021).

    CAS  Google Scholar 

  27. Lee, K. H., Yang, Y., Ding, L., Ziebarth, B. & Mauro, J. C. Effect of pressurization on the fracture toughness of borosilicate glasses. J. Am. Ceram. Soc. 105, 2536–2545 (2022).

    CAS  Google Scholar 

  28. Irifune, T. et al. Pressure-induced nano-crystallization of silicate garnets from glass. Nat. Commun. 7, 13753 (2016).

    CAS  Google Scholar 

  29. Grimsditch, M. Polymorphism in amorphous SiO2. Phys. Rev. Lett. 52, 2379–2381 (1984).

    CAS  Google Scholar 

  30. Meade, C., Hemley, R. J. & Mao, H. K. High-pressure X-ray diffraction of SiO2 glass. Phys. Rev. Lett. 69, 1387–1390 (1992).

    CAS  Google Scholar 

  31. Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. Phys. Rev. Lett. 75, 2714–2717 (1995).

    Google Scholar 

  32. Muniz, R. F. et al. In situ structural analysis of calcium aluminosilicate glasses under high pressure. J. Phys. Condens. Matter 28, 315402 (2016).

    CAS  Google Scholar 

  33. McMillan, P., Piriou, B. & Navrotsky, A. A Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate. Geochim. Cosmochim. Acta 46, 2021–2037 (1982).

    CAS  Google Scholar 

  34. Kolesov, B. A. & Geiger, C. A. Raman spectra of silicate garnets. Phys. Chem. Miner. 25, 142–151 (1998).

    CAS  Google Scholar 

  35. Mazurak, Z. Luminescence and excited state 2Eg decay kinetics of Cr3+ in grossular Ca3Al2 (SiO4)3. Opt. Mater. 3, 89–93 (1994).

    CAS  Google Scholar 

  36. Anstis, G. R., Chantikul, P., Lawn, B. R. & Marshall, D. B. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc. 64, 533–538 (1981).

    CAS  Google Scholar 

  37. Vullo, P. & Davis, M. J. Comparative study of micro-indentation and Chevron notch fracture toughness measurements of silicate and phosphate glasses. J. Non Cryst. Solids 349, 180–184 (2004).

    CAS  Google Scholar 

  38. Trots, D. M. et al. The Sm:YAG primary fluorescence pressure scale. J. Geophys. Res. Solid Earth 118, 5805–5813 (2013).

    CAS  Google Scholar 

  39. Kato, Y., Yamazaki, H., Yoshida, S. & Matsuoka, J. Effect of densification on crack initiation under Vickers indentation test. J. Non Cryst. Solids 356, 1768–1773 (2010).

    CAS  Google Scholar 

  40. Ding, J., Patinet, S., Falk, M. L., Cheng, Y. & Ma, E. Soft spots and their structural signature in a metallic glass. Proc. Natl Acad. Sci. USA 111, 14052–14056 (2014).

    CAS  Google Scholar 

  41. Mamivand, M., Asle Zaeem, M. & El Kadiri, H. Phase field modeling of stress-induced tetragonal-to-monoclinic transformation in zirconia and its effect on transformation toughening. Acta Mater. 64, 208–219 (2014).

    CAS  Google Scholar 

  42. Zhao, T., Zhu, J. & Luo, J. Study of crack propagation behavior in single crystalline tetragonal zirconia with the phase field method. Eng. Fract. Mech. 159, 155–173 (2016).

    Google Scholar 

  43. Zheng, G. et al. Near-unity and zero-thermal-quenching far-red-emitting composite ceramics via pressureless glass crystallization. Laser Photon. Rev. 15, 2100060 (2021).

    CAS  Google Scholar 

  44. Filik, J. et al. Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2. J. Appl. Crystallogr. 50, 959–966 (2017).

    CAS  Google Scholar 

  45. Sheng, H. W. et al. Polyamorphism in a metallic glass. Nat. Mater. 6, 192–197 (2007).

    CAS  Google Scholar 

  46. Rosales-Sosa, G. A., Masuno, A., Higo, Y. & Inoue, H. Crack-resistant Al2O3-SiO2 glasses. Sci. Rep. 6, 23620 (2016).

    CAS  Google Scholar 

  47. Jiang, X., Harzer, J. V., Hillebrands, B., Wild, C. & Koidl, P. Brillouin light scattering on chemical-vapor-deposited polycrystalline diamond: evaluation of the elastic moduli. Appl. Phys. Lett. 59, 1055–1057 (1991).

    CAS  Google Scholar 

  48. Tutluoglu, L. & Keles, C. Mode I fracture toughness determination with straight notched disk bending method. Int. J. Rock. Mech. Min. Sci. 48, 1248–1261 (2011).

    Google Scholar 

  49. Damani, R., Gstrein, R. & Danzer, R. Critical notch-root radius effect in SENB-S fracture toughness testing. J. Eur. Ceram. Soc. 16, 695–702 (1996).

    CAS  Google Scholar 

  50. Quinn, G. D. & Swab, J. J. Fracture toughness of glasses as measured by the SCF and SEPB methods. J. Eur. Ceram. Soc. 37, 4243–4257 (2017).

    CAS  Google Scholar 

  51. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Google Scholar 

  52. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  53. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Google Scholar 

  54. Litton, D. A. & Garofalini, S. H. Modeling of hydrophilic wafer bonding by molecular dynamics simulations. J. Appl. Phys. 89, 6013–6023 (2001).

    CAS  Google Scholar 

  55. Hockney, R. & Eastwood, J. Computer Simulation Using Particles (CRC Press, 2021).

  56. Senturk Dalgic, S. & Guder, V. Computational modeling of the liquid structure of grossular Ca3Al2Si3O12 glass-ceramics. Acta Phys. Pol. A 129, 535–537 (2016).

    Google Scholar 

  57. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    CAS  Google Scholar 

  58. Russo, J. & Tanaka, H. The microscopic pathway to crystallization in supercooled liquids. Sci. Rep. 2, 505 (2012).

    Google Scholar 

  59. Lobato, I., van Aert, S. & Verbeeck, J. Progress and new advances in simulating electron microscopy datasets using MULTEM. Ultramicroscopy 168, 17–27 (2016).

    CAS  Google Scholar 

  60. Birch, F. Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947).

    CAS  Google Scholar 

Download references

Acknowledgements

H.T. thanks the Alexander von Humboldt Foundation for financial support. H.S. was supported by the NSF under grant no. DMR-1611064. W.X. was supported by the National Natural Science Foundation of China (grant no. 12104398) and the China Postdoctoral Science Foundation (grant no. 2021M692840). Nanjing University of Science and Technology thanks the support of the National Natural Science Foundation of China (nos. 92163215, 52174364 and 52101143). Z.Z. acknowledges financial support from the Shanghai Science and Technology Committee, China (no. 22JC1410300), and Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments, China (no. 22dz2260800). This work was also supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (proposal no. 787527), the National Nature Science Foundation of China (no. 11804010), Jiangsu Funding Program for Excellent Postdoctoral Talent, and Major Science and Technology Infrastructure Project of Material Genome Big-science Facilities Platform supported by the Municipal Development and Reform Commission of Shenzhen. We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRA III beamline P02.1. Beamtime was allocated by an in-house contingent. We thank C. Peng at Zhengzhou Research Institute for Abrasives & Grinding in China for the measurements of hardness and fracture toughness; L. Yuan, R. Njul and T. Withers at BGI for valuable discussions and technical supports; Y. Zhao at Yanshan University in China for the preparation of glass ceramics and standard SENB measurements; and B. Zhang at Chongqing University in China for the in situ TEM tensile tests.

Author information

Authors and Affiliations

Authors

Contributions

H.T., H.S. and W.X. proposed and supervised the project. H.T., F.W., H.F. and L.W. synthesized the samples. H.T., Y.C., X.Y., K.Z., H.S.J., M.E. and M.-S.W. performed the structure characterizations. H.T., X.Y., A.K., Z.C., W.X., T.L., Z.Z., S.H. and G.C. measured the properties. H.S. performed the theoretical calculations. H.T., H.S., W.X. and T.K. analysed the data and wrote the manuscript, with the contributions of all authors.

Corresponding authors

Correspondence to Hu Tang, Wenge Xiao or Howard Sheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Lothar Wondraczek, Florian Bouville and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1–3.

Supplementary Video 1

Glassy grossular during in situ tensile test.

Supplementary Video 2

Paracrystalline grossular during in situ tensile test.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Cheng, Y., Yuan, X. et al. Toughening oxide glasses through paracrystallization. Nat. Mater. 22, 1189–1195 (2023). https://doi.org/10.1038/s41563-023-01625-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01625-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing