Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway


Achondroplasia is the most common genetic form of human dwarfism, for which there is presently no effective therapy. C-type natriuretic peptide (CNP) is a newly identified molecule that regulates endochondral bone growth through GC-B, a subtype of particulate guanylyl cyclase. Here we show that targeted overexpression of CNP in chondrocytes counteracts dwarfism in a mouse model of achondroplasia with activated fibroblast growth factor receptor 3 (FGFR-3) in the cartilage. CNP prevented the shortening of achondroplastic bones by correcting the decreased extracellular matrix synthesis in the growth plate through inhibition of the MAPK pathway of FGF signaling. CNP had no effect on the STAT-1 pathway of FGF signaling that mediates the decreased proliferation and the delayed differentiation of achondroplastic chondrocytes. These results demonstrate that activation of the CNP–GC-B system in endochondral bone formation constitutes a new therapeutic strategy for human achondroplasia.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Generation of Nppc mice.
Figure 2: Skeletal rescue of Fgfr3ach mice by overexpression of CNP in cartilage.
Figure 3: Histological analysis of the growth plate of Nppc Fgfr3ach mice.
Figure 4: Effects of CNP on cultured tibiae from Fgfr3ach mice.
Figure 5: Intracellular signaling analysis.
Figure 6: Schematic representation of the mechanism by which CNP compensates for FGFR-3-mediated shortening of bones.


  1. 1

    Oberklaid, F., Danks, D.M., Jensen, F., Stace, L. & Rosshandler, S. Achondroplasia and hypochondroplasia. Comments on frequency, mutation rate, and radiological features in skull and spine. J. Med. Genet. 16, 140–146 (1979).

    CAS  Article  Google Scholar 

  2. 2

    Bellus, G.A. et al. Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am. J. Hum. Genet. 56, 368–373 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Shiang, R. et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78, 335–342 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Cohen, M.M. Jr. Short-limb skeletal dysplasias and craniosynostosis: what do they have in common? Pediatr. Radiol. 27, 442–446 (1997).

    Article  Google Scholar 

  5. 5

    Boilly, B., Vercoutter-Edouart, A.S., Hondermarck, H., Nurcombe, V. & Le Bourhis, X. FGF signals for cell proliferation and migration through different pathways. Cytokine Growth Factor Rev. 11, 295–302 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Sahni, M. et al. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev. 13, 1361–1366 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Sahni, M., Raz, R., Coffin, J.D., Levy, D. & Basilico, C. STAT1 mediates the increased apoptosis and reduced chondrocyte proliferation in mice overexpressing FGF2. Development 128, 2119–2129 (2001).

    CAS  PubMed  Google Scholar 

  8. 8

    Nakao, K., Ogawa, Y., Suga, S. & Imura, H. Molecular biology and biochemistry of the natriuretic peptide system. I: Natriuretic peptides. J. Hypertens. 10, 907–912 (1992).

    CAS  PubMed  Google Scholar 

  9. 9

    Nakao, K., Ogawa, Y., Suga, S. & Imura, H. Molecular biology and biochemistry of the natriuretic peptide system. II: Natriuretic peptide receptors. J. Hypertens. 10, 1111–1114 (1992).

    CAS  Article  Google Scholar 

  10. 10

    Garbers, D.L. Guanylate cyclase receptor family. Recent. Prog. Horm. Res. 46, 85–96 (1990).

    CAS  PubMed  Google Scholar 

  11. 11

    Suda, M. et al. Skeletal overgrowth in transgenic mice that overexpress brain natriuretic peptide. Proc. Natl. Acad. Sci. USA 95, 2337–2342 (1998).

    CAS  Article  Google Scholar 

  12. 12

    Yasoda, A. et al. Natriuretic peptide regulation of endochondral ossification. Evidence for possible roles of the C-type natriuretic peptide/guanylyl cyclase-B pathway. J. Biol. Chem. 273, 11695–11700 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Chusho, H. et al. Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc. Natl. Acad. Sci. USA 98, 4016–4021 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Pfeifer, A. et al. Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II. Science 274, 2082–2086 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Matsukawa, N. et al. The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc. Natl. Acad. Sci. USA 96, 7403–7408 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Jaubert, J. et al. Three new allelic mouse mutations that cause skeletal overgrowth involve the natriuretic peptide receptor C gene (Npr3). Proc. Natl. Acad. Sci. USA 96, 10278–10283 (1999).

    CAS  Article  Google Scholar 

  17. 17

    Colvin, J.S., Bohne, B.A., Harding, G.W., McEwen, D.G. & Ornitz, D.M. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat. Genet. 12, 390–397 (1996).

    CAS  Article  Google Scholar 

  18. 18

    Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A. & Leder, P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–921 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Naski, M.C., Colvin, J.S., Coffin, J.D. & Ornitz, D.M. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 125, 4977–4988 (1998).

    CAS  PubMed  Google Scholar 

  20. 20

    Chrisman, T.D. & Garbers, D.L. Reciprocal antagonism coordinates C-type natriuretic peptide and mitogen-signaling pathways in fibroblasts. J. Biol. Chem. 274, 4293–4299 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Suganami, T. et al. Overexpression of brain natriuretic peptide in mice ameliorates immune-mediated renal injury. J. Am. Soc. Nephrol. 12, 2652–2663 (2001).

    CAS  PubMed  Google Scholar 

  22. 22

    Metsaranta, M. et al. Developmental expression of a type II collagen/β-galactosidase fusion gene in transgenic mice. Dev. Dyn. 204, 202–210 (1995).

    CAS  Article  Google Scholar 

  23. 23

    Toyokuni, S. et al. Quantitative immunohistochemical determination of 8-hydroxy-2'-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Lab. Invest. 76, 365–374 (1997).

    CAS  PubMed  Google Scholar 

  24. 24

    Shukunami, C. et al. Chondrogenic differentiation of clonal mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of parathyroid hormone (PTH)/PTH-related peptide receptor. J. Cell. Biol. 133, 457–468 (1996).

    CAS  Article  Google Scholar 

  25. 25

    Dudley, D.T., Pang, L., Decker, S.J., Bridges, A.J. & Saltiel, A.R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 92, 7686–7689 (1995).

    CAS  Article  Google Scholar 

  26. 26

    Murakami, S., Kan, M., McKeehan, W.L. & de Crombrugghe, B. Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA 97, 1113–1118 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Yoon, Y.M. et al. Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J. Biol. Chem. 277, 8412–8420 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Minina, E., Kreschel, C., Naski, M.C., Ornitz, D.M. & Vortkamp, A. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev. Cell 3, 439–449 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Noonan, K.J., Leyes, M., Forriol, F. & Canadell, J. Distraction osteogenesis of the lower extremity with use of monolateral external fixation. A study of two hundred and sixty-one femora and tibiae. J. Bone. Joint. Surg. Am. 80, 793–806 (1998).

    CAS  Article  Google Scholar 

  30. 30

    Aldegheri, R. Distraction osteogenesis for lengthening of the tibia in patients who have limb-length discrepancy or short stature. J. Bone. Joint. Surg. Am. 81, 624–634 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Tanaka, H. et al. Effect of growth hormone therapy in children with achondroplasia: growth pattern, hypothalamic-pituitary function, and genotype. Eur. J. Endocrinol. 138, 275–280 (1998).

    CAS  Article  Google Scholar 

  32. 32

    Kanaka-Gantenbein, C. Present status of the use of growth hormone in short children with bone diseases (diseases of the skeleton). J. Pediatr. Endocrinol. Metab. 14, 17–26 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Scheven, B.A. & Hamilton, N.J. Longitudinal bone growth in vitro: effects of insulin-like growth factor I and growth hormone. Acta Endocrinol. 124, 602–607 (1991).

    CAS  Article  Google Scholar 

  34. 34

    Dieudonne, S.C. et al. Opposite effects of osteogenic protein and transforming growth factor β on chondrogenesis in cultured long bone rudiments. J. Bone Miner. Res. 9, 771–780 (1994).

    CAS  Article  Google Scholar 

  35. 35

    Coxam, V., Miller, M.A., Bowman, B.M., Qi, D. & Miller, S.C. Insulin-like growth factor 1 and parathyroid hormone effects on the growth of fetal rat metatarsal bones cultured in serum-free medium. Biol. Neonate. 68, 368–376 (1995).

    CAS  Article  Google Scholar 

  36. 36

    Kojima, M., Minamino, N., Kangawa, K. & Matsuo, H. Cloning and sequence analysis of a cDNA encoding a precursor for rat C-type natriuretic peptide (CNP). FEBS Lett. 276, 209–213 (1990).

    CAS  Article  Google Scholar 

  37. 37

    Ogawa, Y. et al. Molecular cloning and chromosomal assignment of the mouse C-type natriuretic peptide (CNP) gene (Nppc): comparison with the human CNP gene (NPPC). Genomics 24, 383–387 (1994).

    CAS  Article  Google Scholar 

  38. 38

    Nakayama, H., Yokoi, H. & Fujita, J. Quantification of mRNA by non-radioactive RT-PCR and CCD imaging system. Nucleic Acids Res. 20, 4939 (1992).

    CAS  Article  Google Scholar 

  39. 39

    Yokoi, H. et al. Non-radioisotopic quantitative RT-PCR to detect changes in mRNA levels during early mouse embryo development. Biochem. Biophys. Res. Commun. 195, 769–775 (1993).

    CAS  Article  Google Scholar 

  40. 40

    Liu, W. et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J. Cell. Biol. 155, 157–166 (2001).

    CAS  Article  Google Scholar 

  41. 41

    Chusho, H. et al. Genetic models reveal that brain natriuretic peptide can signal through different tissue-specific receptor-mediated pathways. Endocrinology 141, 3807–3813 (2000).

    CAS  Article  Google Scholar 

  42. 42

    Mericq, V., Uyeda, J.A., Barnes, K.M., De Luca, F. & Baron, J. Regulation of fetal rat bone growth by C-type natriuretic peptide and cGMP. Pediatr. Res. 47, 189–193 (2000).

    CAS  Article  Google Scholar 

  43. 43

    Bonassar, L.J., Grodzinsky, A.J., Srinivasan, A., Davila, S.G. & Trippel, S.B. Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage. Arch. Biochem. Biophys. 379, 57–63 (2000).

    CAS  Article  Google Scholar 

  44. 44

    Maack, T. et al. Physiological role of silent receptors of atrial natriuretic factor. Science 238, 675–678 (1987).

    CAS  Article  Google Scholar 

Download references


We thank D.M. Ornitz (Department of Molecular Biology and Pharmacology, Washington University School of Medicine) for Fgfr3ach mice and B. DeCrombrugghe (Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center) for the Col2a1 promoter. This work was supported by grants from Research for the Future of the Japan Society for the Promotion of Science (JSPS-RFTF 96100204 and 98L00801); the Japanese Ministry of Education, Sciences, Sports, and Culture (# 12770627); Smoking Research Foundation; Toyobo Biochemical Foundation; and Uehara Memorial Foundation.

Author information



Corresponding author

Correspondence to Kazuwa Nakao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yasoda, A., Komatsu, Y., Chusho, H. et al. Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat Med 10, 80–86 (2004).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing