Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells

An Erratum to this article was published on 01 September 2004

Abstract

Endothelial nitric oxide synthase (eNOS) is essential for neovascularization. Here we show that the impaired neovascularization in mice lacking eNOS is related to a defect in progenitor cell mobilization. Mice deficient in eNOS (Nos3−/−) show reduced vascular endothelial growth factor (VEGF)-induced mobilization of endothelial progenitor cells (EPCs) and increased mortality after myelosuppression. Intravenous infusion of wild-type progenitor cells, but not bone marrow transplantation, rescued the defective neovascularization of Nos3−/− mice in a model of hind-limb ischemia, suggesting that progenitor mobilization from the bone marrow is impaired in Nos3−/− mice. Mechanistically, matrix metalloproteinase-9 (MMP-9), which is required for stem cell mobilization, was reduced in the bone marrow of Nos3−/− mice. These findings indicate that eNOS expressed by bone marrow stromal cells influences recruitment of stem and progenitor cells. This may contribute to impaired regeneration processes in ischemic heart disease patients, who are characterized by a reduced systemic NO bioactivity.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: In vivo recruitment of hematopoietic stem cells and EPCs into the circulation.
Figure 2: Rescue of impaired angiogenic phenotype in eNOS-deficient mice by intravenous (i.v.) injection of wild-type cells.
Figure 3: Incorporation of infused CellTracker-labeled BMCs into the vascular structures of limb muscles of Nos3−/− mice on day 7 after induction of ischemia.
Figure 4: Bone marrow transplantation of wild-type cells does not rescue the impaired angiogenic phenotype of Nos3−/− mice.
Figure 5: In vitro characterization of hematopoietic stem cells from Nos3−/− and wild-type (WT) bone marrow.
Figure 6: Molecules involved in stem and progenitor cell mobilization.

References

  1. Isner, J.M. & Losordo, D.W. Therapeutic angiogenesis for heart failure. Nat. Med. 5, 491–492 (1999).

    CAS  Article  Google Scholar 

  2. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31 (1995).

    CAS  Article  Google Scholar 

  3. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    CAS  Article  Google Scholar 

  4. Takahashi, T. et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat. Med. 5, 434–438 (1999).

    CAS  Article  Google Scholar 

  5. Shi, Q. et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 92, 362–367 (1998).

    CAS  Google Scholar 

  6. Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    CAS  Article  Google Scholar 

  7. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6, 389–395 (2000).

    CAS  Article  Google Scholar 

  8. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001).

    CAS  Article  Google Scholar 

  9. Shintani, S. et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 103, 897–903 (2001).

    CAS  Article  Google Scholar 

  10. Moore, M.A. et al. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann. NY Acad. Sci. 938, 36–45 (2001).

    CAS  Article  Google Scholar 

  11. Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625–637 (2002).

    CAS  Article  Google Scholar 

  12. Asahara, T. et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 18, 3964–3972 (1999).

    CAS  Article  Google Scholar 

  13. Morrison, S.J., Shah, N.M. & Anderson, D.J. Regulatory mechanisms in stem cell biology. Cell 88, 287–298 (1997).

    CAS  Article  Google Scholar 

  14. Kiger, A.A., White-Cooper, H. & Fuller, M.T. Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 407, 750–754 (2000).

    CAS  Article  Google Scholar 

  15. Lapidot, T. & Petit, I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp. Hematol. 30, 973–981 (2002).

    CAS  Article  Google Scholar 

  16. Murohara, T. et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J. Clin. Invest. 101, 2567–2578 (1998).

    CAS  Article  Google Scholar 

  17. Taylor, D.A., Hruban, R., Rodriguez, E.R. & Goldschmidt-Clermont, P.J. Cardiac chimerism as a mechanism for self-repair: does it happen and if so to what degree? Circulation 106, 2–4 (2002).

    Article  Google Scholar 

  18. Prosper, F., Stroncek, D., McCarthy, J.B. & Verfaillie, C.M. Mobilization and homing of peripheral blood progenitors is related to reversible downregulation of α4β1 integrin expression and function. J. Clin. Invest. 101, 2456–2467 (1998).

    CAS  Article  Google Scholar 

  19. Vermeulen, M. et al. Role of adhesion molecules in the homing and mobilization of murine hematopoietic stem and progenitor cells. Blood 92, 894–900 (1998).

    CAS  Google Scholar 

  20. Peled, A. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845–848 (1999).

    CAS  Article  Google Scholar 

  21. Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat. Med. 8, 841–849 (2002).

    CAS  Article  Google Scholar 

  22. Gu, Z. et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297, 1186–1190 (2002).

    CAS  Article  Google Scholar 

  23. De Palma, M., Venneri, M.A., Roca, C. & Naldini, L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat. Med. 9, 789–795 (2003).

    CAS  Article  Google Scholar 

  24. Ziche, M. et al. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J. Clin. Invest. 94, 2036–2044 (1994).

    CAS  Article  Google Scholar 

  25. Murohara, T. et al. Role of endothelial nitric oxide synthase in endothelial cell migration. Arterioscler. Thromb. Vasc. Biol. 19, 1156–1161 (1999).

    CAS  Article  Google Scholar 

  26. Dimmeler, S., Haendeler, J., Nehls, M. & Zeiher, A.M. Suppression of apoptosis by nitric oxide via inhibition of ICE-like and CPP32-like proteases. J. Exp. Med. 185, 601–608 (1997).

    CAS  Article  Google Scholar 

  27. Shami, P.J. & Weinberg, J.B. Differential effects of nitric oxide on erythroid and myeloid colony growth from CD34+ human bone marrow cells. Blood 87, 977–982 (1996).

    CAS  PubMed  Google Scholar 

  28. Dimmeler, S. et al. Activation of nitric oxide synthase in endothelial cells via Akt-dependent phosphorylation. Nature 399, 601–605 (1999).

    CAS  Article  Google Scholar 

  29. Fulton, D. et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597–601 (1999).

    CAS  Article  Google Scholar 

  30. Eriksson, U. & Alitalo, K. VEGF receptor 1 stimulates stem-cell recruitment and new hope for angiogenesis therapies. Nat. Med. 8, 775–777 (2002).

    CAS  Article  Google Scholar 

  31. Schachinger, V., Britten, M.B. & Zeiher, A.M. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101, 1899–1906 (2000).

    CAS  Article  Google Scholar 

  32. Zeiher, A.M. Endothelial vasodilator dysfunction: pathogenetic link to myocardial ischaemia or epiphenomenon? Lancet 348, S10–S12 (1996).

    CAS  Article  Google Scholar 

  33. Vasa, M. et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res. 89, E1–E7 (2001).

    CAS  Article  Google Scholar 

  34. Tepper, O.M. et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106, 2781–2786 (2002).

    Article  Google Scholar 

  35. Hill, J.M. et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med. 348, 593–600 (2003).

    Article  Google Scholar 

  36. Fiering, S.N. et al. Improved FACS-Gal: flow cytometric analysis and sorting of viable eukaryotic cells expressing reporter gene constructs. Cytometry 12, 291–301 (1991).

    CAS  Article  Google Scholar 

  37. Heeschen, C. et al. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat. Med. 7, 833–839 (2001).

    CAS  Article  Google Scholar 

  38. Mezey, E. et al. Transplanted bone marrow generates new neurons in human brains. Proc. Natl. Acad. Sci. USA 100, 1364–1369 (2003).

    CAS  Article  Google Scholar 

  39. Dimmeler, S. et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J. Clin. Invest. 108, 391–397 (2001).

    CAS  Article  Google Scholar 

  40. Rajagopalan, S., Meng, X.P., Ramasamy, S., Harrison, D.G. & Galis, Z.S. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J. Clin. Invest. 98, 2572–2579 (1996).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Muhly-Reinholz, S. Rhiel, T. Röxe and A. Knau for their excellent technical assistance, and H.E. Schaefer (University of Freiburg) for helpful discussion. This work was supported by the Sonderforschungsbereich (SFB 553) and the Alfried Krupp-Stiftung to S.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Dimmeler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aicher, A., Heeschen, C., Mildner-Rihm, C. et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9, 1370–1376 (2003). https://doi.org/10.1038/nm948

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm948

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing