Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation and regulation of Toll-like receptors 2 and 1 in human leprosy

Abstract

The expression and activation of Toll-like receptors (TLRs) was investigated in leprosy, a spectral disease in which clinical manifestations correlate with the type of immune response mounted toward Mycobacterium leprae. TLR2-TLR1 heterodimers mediated cell activation by killed M. leprae, indicating the presence of triacylated lipoproteins. A genome-wide scan of M. leprae detected 31 putative lipoproteins. Synthetic lipopeptides representing the 19-kD and 33-kD lipoproteins activated both monocytes and dendritic cells. Activation was enhanced by type-1 cytokines and inhibited by type-2 cytokines. In addition, interferon (IFN)-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced TLR1 expression in monocytes and dendritic cells, respectively, whereas IL-4 downregulated TLR2 expression. TLR2 and TLR1 were more strongly expressed in lesions from the localized tuberculoid form (T-lep) as compared with the disseminated lepromatous form (L-lep) of the disease. These data provide evidence that regulated expression and activation of TLRs at the site of disease contribute to the host defense against microbial pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TLR2 and TLR2-TLR1 mediate the response to M. leprae and M. leprae 19-kD and 33-kD lipopeptides.
Figure 2: Cytokine profiles influence TLR2-TLR1 activation of monocyte and monocyte-derived dendritic cells.
Figure 3: Effect of cytokines on TLR2 and TLR1 expression on monocytes and monocyte-derived dendritic cells.
Figure 4: TLR2 and TLR1 expression on peripheral monocytes, and activation of monocytes and monocyte-derived dendritic cells in leprosy patients.
Figure 5: Expression of TLR2 and TLR1 in leprosy patients.
Figure 6: Phenotype of cells expressing TLR2 in T-lep lesions.

Similar content being viewed by others

References

  1. Brightbill, H.D. et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 285, 732–736 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Aliprantis, A.O. et al. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285, 736–739 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Takeuchi, O. et al. Role of TLR1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Alexopoulou, L. et al. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat. Med. 8, 878–884 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Yang, R.B. et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395, 284–288 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll- like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Takeuchi, O. et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13, 933–940 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88- dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Jurk, M. et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 3, 499 (2002).

  13. Hemmi, H. et al. A Toll-like receptor that recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C.A.J. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Thoma-Uszynski, S. et al. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291, 1544–1547 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Ridley, D.S. & Jopling, W.H. Classification of leprosy according to immunity. A five-group system. Int. J. Lepr. 34, 255–273 (1966).

    CAS  Google Scholar 

  17. Yamamura, M. et al. Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 254, 277–279 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Salgame, P. et al. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 254, 279–282 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Maeda, Y. et al. Novel 33-kilodalton lipoprotein from Mycobacterium leprae. Infect. Immun. 70, 4106–4111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Staege, H., Schaffner, A. & Schneemann, M. Human toll-like receptors 2 and 4 are targets for deactivation of mononuclear phagocytes by interleukin-4. Immunol. Lett. 71, 1–3 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Sieling, P.A. et al. IL-12 regulates T helper type 1 cytokine responses in human infectious disease. J. Immunol. 153, 3639–3647 (1994).

    CAS  PubMed  Google Scholar 

  22. Garcia, V.E. et al. IL-18 promotes type 1 cytokine production from NK cells and T cells in human intracellular infection. J. Immunol. 162, 6114–6121 (1999).

    CAS  PubMed  Google Scholar 

  23. Flo, T.H. et al. Differential expression of Toll-like receptor 2 in human cells. J. Leukoc. Biol. 69, 474–481 (2001).

    CAS  PubMed  Google Scholar 

  24. O'Brien, A.D. et al. Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J. Immunol. 124, 20–24 (1980).

    CAS  PubMed  Google Scholar 

  25. Anderson, G.W.J. & Osterman, J.V. Host defenses in experimental rickettsialpox: genetics of natural resistance to infection. Infect. Immun. 28, 132–136 (1980).

    PubMed  PubMed Central  Google Scholar 

  26. Cross, A. et al. The importance of a lipopolysaccharide-initiated, cytokine-mediated host defense mechanism in mice against extraintestinally invasive Escherichia coli. J. Clin. Invest. 96, 676–686 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weinstein, D.L., Lissner, C.R., Swanson, R.N. & O'Brien, A.D. Macrophage defect and inflammatory cell recruitment dysfunction in Salmonella susceptible C3H/HeJ mice. Cell. Immunol. 102, 68–77 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Medina, E. & North, R.J. Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype. Immunology 93, 270–274 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takeuchi, O., Hoshino, K. & Akira, S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol. 165, 5392–5396 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, X. et al. Toll-like receptor 4 mediates innate immune responses to Haemophilus influenzae infection in mouse lung. J. Immunol. 168, 810–815 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Wooten, R.M. et al. Toll-like receptor 2 is required for innate, but not acquired, host defense to Borrelia burgdorferi. J. Immunol. 168, 348–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Kang, T.J. & Chae, G.T. Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol. Med. Microbiol. 31, 53–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Aliprantis, A.O., Yang, R.B., Weiss, D.S., Godowski, P. & Zychlinsky, A. The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J. 19, 3325–3336 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cole, S.T. et al. Massive gene decay in the leprosy bacillus. Nature 409, 1007–1011 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Post, F.A. et al. Mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits Mycobacterium smegmatis-induced cytokine production by human macrophages in vitro. Infect. Immun. 69, 1433–1439 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yeremeev, V.V. et al. Deletion of the 19kDa antigen does not alter the protective efficacy of BCG. Tubercle Lung Dis. 80, 243–247 (2000).

    Article  CAS  Google Scholar 

  38. Means, T.K. et al. Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. 163, 3920–3927 (1999).

    CAS  PubMed  Google Scholar 

  39. Means, T.K. et al. The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J. Immunol. 163, 6748–6755 (1999).

    CAS  PubMed  Google Scholar 

  40. Hirschfeld, M., Ma, Y., Weis, J.H., Vogel, S.N. & Weis, J.J. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J. Immunol. 165, 618–622 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Takeuchi, O. et al. Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol. 164, 554–557 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Bairoch, A., Bucher, P. & Hofmann, K. The PROSITE database, its status in 1997. Nucleic Acids Res. 25, 217–221 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Monney, L. et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415, 536–541 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Modlin, R.L. et al. In situ identification of cells in human leprosy granulomas with monoclonal antibodies to interleukin 2 and its receptor. J. Immunol. 132, 3085–3090 (1984).

    CAS  PubMed  Google Scholar 

  45. Stenger, S. et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Ochoa, M.T. et al. T-cell release of granulysin contributes to host defense in leprosy. Nat. Med. 7, 174–179 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Williams and T. Gillis (National Hansen's Disease Programs) for use of their unpublished data on expression of ML1966 mRNA, W. Chung for technical assistance and S. Smale for critical comments on the manuscript and scientific discussion. This work was supported in part by grants from the National Institutes of Health (AI07126, AI22553 and AI47866) and the World Health Organization (IMMLEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Modlin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krutzik, S., Ochoa, M., Sieling, P. et al. Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med 9, 525–532 (2003). https://doi.org/10.1038/nm864

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm864

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing