Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways

Abstract

Cancer vaccines targeting 'self' antigens that are expressed at consistently high levels by tumor cells are potentially useful in immunotherapy, but immunological tolerance may block their function. Here, we describe a novel, naked DNA vaccine encoding an alphavirus replicon (self-replicating mRNA) and the self/tumor antigen tyrosinase-related protein-1. Unlike conventional DNA vaccines, this vaccine can break tolerance and provide immunity to melanoma. The vaccine mediates production of double-stranded RNA, as evidenced by the autophosphorylation of dsRNA-dependent protein kinase R (PKR). Double-stranded RNA is critical to vaccine function because both the immunogenicity and the anti-tumor activity of the vaccine are blocked in mice deficient for the RNase L enzyme, a key component of the 2′,5′-linked oligoadenylate synthetase antiviral pathway involved in double-stranded RNA recognition. This study shows for the first time that alphaviral replicon-encoding DNA vaccines activate innate immune pathways known to drive antiviral immune responses, and points the way to strategies for improving the efficacy of immunization with naked DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of plasmids used for this study.
Figure 2: Antigen expression does not correlate with immunogenicity.
Figure 3: Tumor prevention by immunization with various plasmids encoding TRP-1.
Figure 4: Production of biologically active dsRNA in cells transfected with replicase-based plasmids.
Figure 5: The involvement of dsRNA and dsRNA-dependent pathways in the immune response to replicase-based plasmids.
Figure 6: The involvement of dsRNA and dsRNA-dependent pathways in the immune response after immunization with replicase-based plasmids.

Similar content being viewed by others

References

  1. Yewdell, J.W. & Bennink, J.R. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol. 17, 51–88 (1999).

    Article  CAS  Google Scholar 

  2. Blum, J.S., Ma, C. & Kovats, S. Antigen-presenting cells and the selection of immunodominant epitopes. Crit. Rev. Immunol. 17, 411–417 (1997).

    CAS  PubMed  Google Scholar 

  3. Donnelly, J.J., Ulmer, J.B., Shiver, J.W. & Liu, M.A. DNA vaccines. Annu. Rev. Immunol. 15, 617–648 (1997).

    Article  CAS  Google Scholar 

  4. Leitner, W.W., Hammerl, P. & Thalhamer, J. Nucleic acid for the treatment of cancer: Genetic vaccines and DNA adjuvants. Curr. Pharm. Res. 7, 1641–1667 (2001).

    Article  CAS  Google Scholar 

  5. Sasaki, S., Amara, R.R., Oran, A.E., Smith, J.M. & Robinson, H.L. Apoptosis-mediated enhancement of DNA-raised immune responses by mutant caspases. Nature Biotechnol. 19, 543–547 (2001).

    Article  CAS  Google Scholar 

  6. Zhou, X. et al. Self-replicating Semliki Forest virus RNA as recombinant vaccine. Vaccine 12, 1510–1514 (1994).

    Article  CAS  Google Scholar 

  7. Herweijer, H. et al. A plasmid-based self-amplifying Sindbis virus vector. Hum. Gene Ther. 6, 1161–1167 (1995).

    Article  CAS  Google Scholar 

  8. Schlesinger, S. Alphavirus vectors: Development and potential therapeutic applications. Exp. Opin. Biol. Ther. 1, 177–191 (2001).

    Article  CAS  Google Scholar 

  9. Schlesinger, R.W. in The Togaviruses (ed. Wengler, G.) 459 (Academic Press, New York, 1980).

    Google Scholar 

  10. Hariharan, M.J. et al. DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector. J. Virol. 72, 950–958 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Berglund, P., Smerdou, C., Fleeton, M.N., Tubulekas, I. & Liljestrom, P. Enhancing immune responses using suicidal DNA vaccines. Nature Biotechnol. 16, 562–565 (1998).

    Article  CAS  Google Scholar 

  12. Leitner, W.W., Ying, H., Driver, D.A., Dubensky, T.W. & Restifo, N.P. Enhancement of tumor-specific immune response with plasmid DNA replicon vectors. Cancer Res. 60, 51–55 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Weber, L.W. et al. Tumor immunity and autoimmunity induced by immunization with homologous DNA. J. Clin. Invest. 102, 1258–1264 (1998).

    Article  CAS  Google Scholar 

  14. Zhou, A., Hassel, B.A. & Silverman, R.H. Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action. Cell 72, 753–765 (1993).

    Article  CAS  Google Scholar 

  15. Overwijk, W.W. et al. gp100/pmel 17 is a murine tumor rejection antigen: Induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J. Exp. Med. 188, 277–286 (1998).

    Article  CAS  Google Scholar 

  16. Bowne, W.B. et al. Coupling and uncoupling of tumor immunity and autoimmunity. J. Exp. Med. 190, 1717–1722 (1999).

    Article  CAS  Google Scholar 

  17. Ying, H. et al. Cancer therapy using a self-replicating RNA vaccine. Nature Med. 5, 823–827 (1999).

    Article  CAS  Google Scholar 

  18. Vijayasaradhi, S., Bouchard, B. & Houghton, A.N. The melanoma antigen gp75 is the human homologue of the mouse b (brown) locus gene product. J. Exp. Med. 171, 1375–1380 (1990).

    Article  CAS  Google Scholar 

  19. Ito, S. & Jimbow, K. Quantitative analysis of eumelanin and pheomelanin in hair and melanomas. J. Invest. Dermatol. 80, 268–272 (1983).

    Article  CAS  Google Scholar 

  20. Overwijk, W.W. et al. Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes. Proc. Natl. Acad. Sci. USA 96, 2982–2987 (1999).

    Article  CAS  Google Scholar 

  21. Player, M.R. & Torrence, P.F. The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol. Ther. 78, 55–113 (1998).

    Article  CAS  Google Scholar 

  22. Williams, B.R. PKR; a sentinel kinase for cellular stress. Oncogene 18, 6112–6120 (1999).

    Article  CAS  Google Scholar 

  23. Terenzi, F. et al. The antiviral enzymes PKR and RNase L suppress gene expression from viral and non-viral based vectors. Nucleic Acids Res. 27, 4369–4375 (1999).

    Article  CAS  Google Scholar 

  24. Zhou, A. et al. Interferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L. EMBO J. 16, 6355–6363 (1997).

    Article  CAS  Google Scholar 

  25. van Elsas, A. et al. Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: Comparison of prophylaxis and therapy. J. Exp. Med. 194, 481–489 (2001).

    Article  CAS  Google Scholar 

  26. Leitner, W.W., Ying, H. & Restifo, N.P. DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 18, 765–777 (1999).

    Article  CAS  Google Scholar 

  27. Dubensky, T.W.J. et al. Sindbis virus DNA-based expression vectors: utility for in vitro and in vivo gene transfer. J. Virol. 70, 508–519 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Johanning, F.W. et al. A Sindbis virus mRNA polynucleotide vector achieves prolonged and high level heterologous gene expression in vivo. Nucleic Acids Res. 23, 1495–1501 (1995).

    Article  CAS  Google Scholar 

  29. Sasaki, S. et al. Monophosphoryl lipid A enhances both humoral and cell-mediated immune responses to DNA vaccination against human immunodeficiency virus type 1. Infect. Immun. 65, 3520–3528 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Perri, S. et al. Replicon vectors derived from Sindbis virus and Semliki forest virus that establish persistent replication in host cells. J. Virol. 74, 9802–9807 (2000).

    Article  CAS  Google Scholar 

  31. Albert, M.L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998).

    Article  CAS  Google Scholar 

  32. Chen, Z. et al. Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells. Int. J. Cancer 93, 539–548 (2001).

    Article  CAS  Google Scholar 

  33. Shaif-Muthana, M., McIntyre, C., Sisley, K., Rennie, I. & Murray, A. Dead or alive: immunogenicity of human melanoma cells when presented by dendritic cells. Cancer Res. 60, 6441–6447 (2000).

    CAS  PubMed  Google Scholar 

  34. Restifo, N.P. Vaccines to die for. Nature Biotechnol. 19, 527–528 (2001).

    Article  CAS  Google Scholar 

  35. Chattergoon, M.A. et al. Targeted antigen delivery to antigen-presenting cells including dendritic cells by engineered Fas-mediated apoptosis. Nature Biotechnol. 18, 974–979 (2000).

    Article  CAS  Google Scholar 

  36. Der, S.D., Yang, Y.L., Weissmann, C. & Williams, B.R. A double-stranded RNA-activated protein kinase-dependent pathway mediating stress-induced apoptosis. Proc. Natl. Acad. Sci. USA 94, 3279–3283 (1997).

    Article  CAS  Google Scholar 

  37. Sarid, R., Sato, T., Bohenzky, R.A., Russo, J.J. & Chang, Y. Kaposi's sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Nature Med. 3, 293–298 (1997).

    Article  CAS  Google Scholar 

  38. Revilla, Y. et al. Inhibition of apoptosis by the African swine fever virus Bcl-2 homologue: Role of the BH1 domain. Virology 228, 400–404 (1997).

    Article  CAS  Google Scholar 

  39. Clynes, R., Takechi, Y., Moroi, Y., Houghton, A. & Ravetch, J.V. Fc receptors are required in passive and active immunity to melanoma. Proc. Natl. Acad. Sci. USA 95, 652–656 (1998).

    Article  CAS  Google Scholar 

  40. Wagner, H. Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity. Curr. Opin. Microbiol. 5, 62–69 (2002).

    Article  CAS  Google Scholar 

  41. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  Google Scholar 

  42. Surman, D.R. et al. Generation of polyclonal rabbit antisera to mouse melanoma associated antigens using gene gun immunization. J. Immunol. Methods 214, 51–62 (1998).

    Article  CAS  Google Scholar 

  43. Leitner, W.W. et al. Immune responses induced by intramuscular or gene gun injection of protective DNA vaccines that express circumsporozoite protein from Plasmodium berghei malaria parasites. J. Immunol. 157, 6119 (1997).

  44. Touloukian, C.E. et al. Expression of a “self-”antigen by human tumor cells enhances tumor antigen-specific CD4(+) T-cell function. Cancer Res. 62, 5144–5147 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, Z. & Williams, B.R. The B56α regulatory subunit of protein phosphatase 2A is a target for regulation by double-stranded RNA-dependent protein kinase PKR. Mol. Cell. Biol. 20, 5285–5299 (2000).

    Article  CAS  Google Scholar 

  46. Kumar, A., Haque, J., Lacoste, J., Hiscott, J. & Williams, B.R. Double-stranded RNA-dependent protein kinase activates transcription factor NF-κ B by phosphorylating I κ B. Proc. Natl. Acad. Sci. USA 91, 6288–6292 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Finch for FACS sorting, and E.S. Bergmann-Leitner and S. Frank for critical review of the manuscript. Supported in part by grant R01-AI34039 (to B.R.G.W.) and CA44059 (to R.H.S.) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wolfgang W. Leitner or Nicholas P. Restifo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leitner, W., Hwang, L., deVeer, M. et al. Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med 9, 33–39 (2003). https://doi.org/10.1038/nm813

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm813

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing