Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional PPAR-γ receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas

Abstract

Adrenocorticotrophic hormone (ACTH)-secreting pituitary tumors are associated with high morbidity due to excess glucocorticoid production. No suitable drug therapies are currently available, and surgical excision is not invariably curative. Here we demonstrate immunoreactive expression of the nuclear hormone receptor peroxisome proliferator-activated receptor-γ (PPAR-γ) exclusively in normal ACTH-secreting human anterior pituitary cells: PPAR-γ was abundantly expressed in all of six human ACTH-secreting pituitary tumors studied. PPAR-γ activators induced G0/G1 cell-cycle arrest and apoptosis and suppressed ACTH secretion in human and murine corticotroph tumor cells. Development of murine corticotroph tumors, generated by subcutaneous injection of ACTH-secreting AtT20 cells, was prevented in four of five mice treated with the thiazolidinedione compound rosiglitazone, and ACTH and corticosterone secretion was suppressed in all treated mice. Based on these findings, thiazolidinediones may be an effective therapy for Cushing disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pituitary PPAR-γ expression is restricted to normal human corticotroph cells.
Figure 2: PPAR-γ is abundantly expressed in human ACTH-secreting pituitary tumors.
Figure 3: Functional PPAR-γ in pituitary corticotroph tumors.
Figure 4: TZDs inhibit corticotroph cell proliferation, ACTH synthesis and secretion, and induce apoptosis.
Figure 5: Rosiglitazone inhibits corticotroph pituitary tumor growth in vivo.
Figure 6: Rosiglitazone treatment retards growth of established pituitary corticotroph tumors and suppresses steroid hormone levels in vivo (n = 5).

Similar content being viewed by others

References

  1. Issemann, I. & Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645–660 (1990).

    Article  CAS  Google Scholar 

  2. Schoonjans, K., Martin, G., Staels, B. & Auwerx, J. Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr. Opin. Lipidol. 8, 159–166 (1997).

    Article  CAS  Google Scholar 

  3. Kliewer, S.A., Umesono, K., Noonan, D.J., Heyman, R.A. & Evans, R.M. Convergence of 9-cis retinoic acid and peroxisome proliferator signaling pathways through heterodimer formation of their receptors. Nature 358, 771–774 (1992).

    Article  CAS  Google Scholar 

  4. Palmer, C.A.N., Hsu, M.H., Griffin, K.J. & Johnson, E.F. Interaction of the peroxisome proliferator-activated receptor α with the retinoid X receptor α unmasks a cryptic peroxisome proliferator response element that overlaps an ARP-1-binding site in the CYP4A6 promoter. J. Biol. Chem. 270, 16114–16121 (1995).

    Article  CAS  Google Scholar 

  5. Tontonoz, P., Hu, E., Graves, R.A., Budavari, A.I. & Spiegelman, B.M. mPPARγ2: Tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224–1234 (1994).

    Article  CAS  Google Scholar 

  6. Spiegelman, B.M. PPAR-γ: Adipogenic regulator and thiazolidinedione receptor. Diabetes 47, 507–514 (1998).

    Article  CAS  Google Scholar 

  7. Kliewer, S.A. et al. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell 83, 813–819 (1995).

    Article  CAS  Google Scholar 

  8. Forman, B.M., Tontonoz, P., Chen, J., Brun, R.P., Spiegelman, B.M. & Evans, R.M. 15-Deoxy-Δ12,14-prostaglandin J1 is a ligand for the adipocyte determination factor PPAR γ. Cell 83, 803–812 (1995).

    Article  CAS  Google Scholar 

  9. Saltiel, A.R. & Olefsky, J.M. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 45, 1661–1669 (1996).

    Article  CAS  Google Scholar 

  10. Ricote, M., Li, A.C., Willson, T.M., Kelly, C.J. & Glass, C.K. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391, 79–82 (1998).

    Article  CAS  Google Scholar 

  11. Jiang, C., Ting, A.T. & Seed, B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391, 82–86 (1998).

    Article  CAS  Google Scholar 

  12. Xin, X., Yang, S., Kowalski, J. & Gerritsen, M.E. Peroxisome proliferator-activated receptor γ ligands are potent inhibitors of angiogenesis in vitro and in vivo. J. Biol. Chem. 274, 9116–9121 (1999).

    Article  CAS  Google Scholar 

  13. Staels, B. et al. Activation of human aortic smooth-muscle cells is inhibited by PPAR-α but not PPAR-γ activators. Nature 393, 790–793 (1998).

    Article  CAS  Google Scholar 

  14. Elstner, E. et al. Ligands for peroxisome proliferator-activated receptor-γ and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc. Natl. Acad. Sci. USA 95, 8806–8811 (1998).

    Article  CAS  Google Scholar 

  15. Kubota, T. et al. Ligand for peroxisome proliferator-activated receptor-γ (troglitazone) has potent anti-tumor effects against prostate cancer both in vitro and in vivo. Cancer Res. 58, 3344–3352 (1998).

    CAS  PubMed  Google Scholar 

  16. Sarraf, P. et al. Differentiation and reversal of malignant changes in colon cancer through PPAR γ. Nature Med. 4, 1046–1052 (1998).

    Article  CAS  Google Scholar 

  17. Heaney, A.P. & Melmed, S. Molecular pathogenesis of pituitary tumors. in Oxford Textbook of Endocrinology (eds. Wass, J.A.H. & Shalet S.M.) 2, 109–120 (Oxford University Press, Oxford, 2002).

    Google Scholar 

  18. Ross, E.J. & Linch, D.C. Cushing's syndrome-killing disease: Discrimatory value of signs and symptoms aiding early diagnosis. Lancet 2, 646–649 (1982).

    Article  CAS  Google Scholar 

  19. Oldfield, E.W. et al. Petrosal sinus sampling with and without corticotrophin-releasing hormone for the differential diagnosis of Cushing's syndrome. N. Engl. J. Med. 325, 897–905 (1991).

    Article  CAS  Google Scholar 

  20. Shimon, I. & Melmed, S. Management of pituitary tumors. Ann. Intern. Med. 129, 472–483 (1998).

    Article  CAS  Google Scholar 

  21. Melmed, S. et al. Consensus: Guidelines for acromegaly management. J. Clin. Endocrinol. Metab. 87, 4054–4058 (2002).

    Article  CAS  Google Scholar 

  22. Simmons, N.E., Alden, T.D., Thorner, M.O. & Laws, E.R. Jr. Serum cortisol response to transphenoidal surgery for Cushing disease. J. Neurosurg. 95, 1–8 (2001).

    Article  CAS  Google Scholar 

  23. Mampalam, T.J., Tyrrell, J.B. & Wilson, C.B. Transsphenoidal microsurgery for Cushing's disease: A report of 216 cases. Ann. Intern. Med. 109, 487–493 (1988).

    Article  CAS  Google Scholar 

  24. Hoybye, C. et al. Adrenocorticotrophic hormone-producing pituitary tumors: 12 to 22-year follow-up after treatment with sterotactic radiosurgery. Neurosurgery 49, 284–291 (2001).

    CAS  PubMed  Google Scholar 

  25. Findling, J.W. & Raff, H. Diagnosis and differential diagnosis of Cushing's syndrome. Endocrinol. Metab. Clin. North Am. 30, 729–477 (2001).

    Article  CAS  Google Scholar 

  26. Orth, D.N. Cushing's syndrome. N. Engl. J. Med. 332, 791–803 (1995).

    Article  CAS  Google Scholar 

  27. Brada, M. et al. The long-term efficacy of conservative surgery and radiotherapy in the control of pituitary adenomas. Clin. Endocrinol. 38, 571–578 (1993).

    Article  CAS  Google Scholar 

  28. Trainer, P.J. & Besser, M. Cushing's syndrome: Therapy directed at the adrenal glands. Endocrinol. Metab. Clin. North. Am. 23, 571–584 (1994).

    Article  CAS  Google Scholar 

  29. Krieger, D.T., Amorosa, L. & Linick, F. Cyproheptadine-induced remission of Cushing's disease. N. Engl. J. Med. 293, 893–896 (1975).

    Article  CAS  Google Scholar 

  30. Sonino, N. The use of ketoconazole as an inhibitor of steroid production. N. Engl. J. Med. 317, 812–818 (1987).

    Article  CAS  Google Scholar 

  31. Vale, W., Spiess, J., Rivier, C. & Rivier, J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213, 1394–1397 (1981).

    Article  CAS  Google Scholar 

  32. White, A. & Gibson, S. ACTH precursors: Biological significance and clinical relevance. Clin. Endocrinol. 48, 251–255 (1998).

    Article  CAS  Google Scholar 

  33. Trainer, P.J. et al. Transsphenoidal resection in Cushing's disease: Undetectable serum cortisol as the definition of successful treatment. Clin. Endocrinol. 38, 73–78 (1993).

    Article  CAS  Google Scholar 

  34. Wakino, S., et al. Peroxisome proliferator-activated receptor γ ligands inhibit retinoblastoma phosphorylation and G1 → S transition in vascular smooth cells. J. Biol. Chem. 275, 22435–22441 (2000).

    Article  CAS  Google Scholar 

  35. Sugimura, A. et al. Troglitazone suppresses cell growth of myeloid leukemia cell lines by induction of p21WAF1/CIP1 cyclin-dependent kinase inhibitor. Biochem. Biophys. Res. Comm. 261, 833–837 (1999).

    Article  CAS  Google Scholar 

  36. Motomura, W., Okumura, T., Takahashi, N., Obara, T. & Kohgo, Y. Activation of peroxisome proliferator-activated receptor γ by troglitazone inhibits cell growth through the increase of p27Kip1 in human pancreatic carcinoma cells. Cancer Res. 60, 5558–5564 (2000).

    CAS  PubMed  Google Scholar 

  37. Goke, R., Goke, A., Goke, B. & Chen, Y. Regulation of TRAIL-induced apoptosis by transcription factors. Cell Immunol. 201, 77–81 (2000).

    Article  CAS  Google Scholar 

  38. Goldstein, B.J. Rosiglitazone. Int. J. Clin. Pract. 54, 333–337 (2000).

    CAS  PubMed  Google Scholar 

  39. Hammer, G.D., Fairchild-Huntress, V. & Low, M.J. Pituitary-specific and hormonally regulated gene expression directed by the rat proopiomelanocortin promoter in transgenic mice. Mol. Endocrinol. 4, 1689–1697 (1990).

    Article  CAS  Google Scholar 

  40. Bousquet, C., Zatelli, M.C. & Melmed, S. Direct regulation of pituitary proopiomelanocortin by STAT3 provides a novel mechanism for immuno-neuroendocrine interfacing. J. Clin. Invest. 106, 1417–1425 (2000).

    Article  CAS  Google Scholar 

  41. Heaney, A.P., Horwitz, G.A., Wang, Z., Singson, R. & Melmed, S. Estrogen induced pituitary Tumor Transforming Gene (PTTG) and bFGF in Pituitary Tumor Pathogenesis. Nature Med. 5, 1317–1321 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Doris Factor Molecular Endocrinology Laboratory, the Annenberg Foundation and NIH grant CA75979.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony P. Heaney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heaney, A., Fernando, M., Yong, W. et al. Functional PPAR-γ receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas. Nat Med 8, 1281–1287 (2002). https://doi.org/10.1038/nm784

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm784

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing