Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion

A Corrigendum to this article was published on 01 September 2002

This article has been updated

Abstract

B7-H1, a recently described member of the B7 family of costimulatory molecules, is thought to be involved in the regulation of cellular and humoral immune responses through the PD-1 receptor on activated T and B cells. We report here that, except for cells of the macrophage lineage, normal human tissues do not express B7-H1. In contrast, B7-H1 is abundant in human carcinomas of lung, ovary and colon and in melanomas. The pro-inflammatory cytokine interferon-γ upregulates B7-H1 on the surface of tumor cell lines. Cancer cell–associated B7-H1 increases apoptosis of antigen-specific human T-cell clones in vitro, and the apoptotic effect of B7-H1 is mediated largely by one or more receptors other than PD-1. In addition, expression of B7-H1 on mouse P815 tumor increases apoptosis of activated tumor-reactive T cells and promotes the growth of highly immunogenic B7-1+ tumors in vivo. These findings have implications for the design of T cell–based cancer immunotherapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: B7-H1 expression in normal and cancer tissues.
Figure 2: B7-H1+ 624mel melanoma cells promote apoptosis of tumor-specific M15 CD8+ CTLs and are resistant to growth inhibition by the CTLs.
Figure 3: Human breast carcinoma HBL-100 constitutively expressing B7-H1 promotes apoptosis of the CEA-specific M99 CD8+ CTLs.
Figure 4: Role of FasL and IL-10 in B7-H1-mediated apoptosis of activated T cells.
Figure 5: Expression of B7-H1 on P815 tumor promotes apoptosis of T cells and increases tumor growth in vivo.

Change history

  • 27 August 2002

    Incorrectly stated no declaration in August 2002 issue. Corrigendum run in September 2002 issue. I updated the link in the original article to contain a "yes" declaration including the explanatory text.

References

  1. 1

    Chambers, C.A. & Allison, J.P. Co-stimulation in T cell responses. Curr. Opin. Immunol. 9, 396–404 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Lenschow, D.J., Walunas, T.L. & Bluestone, J.A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Chen, L., Linsley, P.S. & Hellstrom, K.E. Costimulation of T cells for tumor immunity. Immunol. Today 14, 483–486 (1993).

    CAS  Article  Google Scholar 

  4. 4

    Boise, L.H., Noel, P.J. & Thompson, C.B. CD28 and apoptosis. Curr. Opin. Immunol. 7, 620–625 (1995).

    CAS  Article  Google Scholar 

  5. 5

    Watts, T.H. & DeBenedette, M.A. T cell co-stimulatory molecules other than CD28. Curr. Opin. Immunol. 11, 286–293 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Noel, P.J., Boise, L.H., Green, J.M. & Thompson, C.B. CD28 costimulation prevents cell death during primary T cell activation. J. Immunol. 157, 636–642 (1996).

    CAS  Google Scholar 

  7. 7

    Hurtado, J.C., Kim, Y.J. & Kwon, B.S. Signals through 4-1BB are costimulatory to previously activated splenic T cells and inhibit activation-induced cell death. J. Immunol. 158, 2600–2609 (1997).

    CAS  Google Scholar 

  8. 8

    Takahashi, C., Mittler, R.S. & Vella, A.T. 4-1BB is a bona fide CD8 T cell survival signal. J. Immunol. 162, 5037–5040 (1999).

    CAS  Google Scholar 

  9. 9

    Rogers, P.R., Song, J., Gramaglia, I., Killeen, N. & Croft, M. OX40 promotes bcl-xl and bcl-2 expression and is essential for long-term survival of CD4+ T cells. Immunity 15, 445–455 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Krummel, M.F. & Allison, J.P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med. 183, 2533–2540 (1996).

    CAS  Article  Google Scholar 

  11. 11

    Walunas, T.L., Bakker, C.Y. & Bluestone, J.A. CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med. 183, 2541–2550 (1996).

    CAS  Article  Google Scholar 

  12. 12

    Dong, H., Zhu, G., Tamada, K. & Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nature Med. 5, 1365–1369 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Tamura, H. et al. B7-H1 costimulation preferentially enhances CD28-independent T-helper cell function. Blood 97, 1809–1816 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Freeman, G.J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif–carrying immunoreceptor. Immunity 11, 141–151 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor–deficient mice. Science 291, 319–322 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Rivoltini, L. et al. Quantitative correlation between HLA class I allele expression and recognition of melanoma cells by antigen-specific cytotoxic T lymphocytes. Cancer Res. 55, 3149–3157 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Nagata, S. & Golstein, P. The Fas death factor. Science 267, 1449–1456 (1995).

    CAS  Article  Google Scholar 

  19. 19

    Jeremias, I., Herr, I., Boehler, T. & Debatin, K.M. TRAIL/Apo-2-ligand-induced apoptosis in human T cells. Eur. J. Immunol. 28, 143–152 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Zhao, S. et al. Functional expression of TRAIL by lymphoid and myeloid tumour cells. Br. J. Haematol. 106, 827–832 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Lu, J. & Celis, E. Use of two predictive algorithms of the world wide web for the identification of tumor-reactive T-cell epitopes. Cancer Res. 60, 5223–5227 (2000).

    CAS  PubMed  Google Scholar 

  22. 22

    Georgescu, L., Vakkalanka, R.K. Elkon, K.B. & Crow, M.K. Interleukin-10 promotes activation-induced cell death of SLE lymphocytes mediated by Fas ligand. J. Clin. Invest. 100, 2622–2633 (1997).

    CAS  Article  Google Scholar 

  23. 23

    Sykulev, Y. et al. High-affinity reactions between antigen-specific T-cell receptors and peptides associated with allogeneic and syngeneic major histocompatibility complex class I proteins. Proc. Natl. Acad. Sci. USA 91, 11487–11491 (1994).

    CAS  Article  Google Scholar 

  24. 24

    Tamada, K., Tamura, H., Flies, D.B., Fu, Y.X., Pease, L.R., Blazar, B.R. & Chen, L. Blockade of LIGHT/LTβ and CD40 signaling induces allospecific T cell anergy, preventing graft-versus-host disease. J. Clin. Invest. 109, 549–557 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Chen, L., McGowan, P., Ashe, S., Johnston, J., Li, Y., Hellstrom, I. & Hellstrom, K.E. Tumor immunogenicity determines the effect of B7 costimulation on T cell–mediated tumor immunity. J. Exp. Med. 179, 523–532 (1994).

    CAS  Article  Google Scholar 

  26. 26

    Smyth, M.J., Godfrey, D.I. & Trapani, J.A. A fresh look at tumor immunosurveillance and immunotherapy. Nature Immunol. 2, 293–299 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Griffith, T.S, Brunner, T., Fletcher, S.M., Green, D.R. & Ferguson, T.A. Fas ligand–induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).

    CAS  Article  Google Scholar 

  28. 28

    O'Connell, J., Bennett, M.W., O'Sullivan, G.C., Collins, J.K. & Shanahan, F. Fas counter-attack: the best form of tumor defense? Nature Med. 5, 267–268 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Strand, S. & Galle, P.R. Immune evasion by tumours: involvement of the CD95 (APO-1/Fas) system and its clinical implications. Mol. Med. Today 4, 63–68 (1998).

    CAS  Article  Google Scholar 

  30. 30

    Chappell, D.B, Zaks, T.Z., Rosenberg, S.A. & Restifo, N.P. Human melanoma cells do not express Fas (Apo-1/CD95) ligand. Cancer Res. 59, 59–62 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Arai, H., Gordon, D., Nabel, E.G. & Nabel, G.J. Gene transfer of Fas ligand induces tumor regression in vivo. Proc. Natl. Acad. Sci. USA. 94, 13862–13867 (1997).

    CAS  Article  Google Scholar 

  32. 32

    Nakashima, M., Sonoda, K. & Watanabe, K. Inhibition of cell growth and induction of apoptotic cell death by the human tumor-associated antigen, RCAS1. Nature Med. 5, 938–942 (1999).

    CAS  Article  Google Scholar 

  33. 33

    Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).

    CAS  Article  Google Scholar 

  34. 34

    Linsley, P.S., Greene, J.L., Brady, W., Bajorath, J., Ledbetter, J.A. & Peach, R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793–801 (1994).

    CAS  Article  Google Scholar 

  35. 35

    Agata, Y. et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 8, 765–772 (1996).

    CAS  Article  Google Scholar 

  36. 36

    Finger, L.R. et al. G The human PD-1 gene: complete cDNA, genomic organization, and developmentally regulated expression in B cell progenitors. Gene 197, 177–187 (1997).

    CAS  Article  Google Scholar 

  37. 37

    Chapoval, A.I., Zhu, G. & Chen, L. Immunoglobulin fusion protein as a tool for evaluation of T-cell costimulatory molecules. Methods Mol. Med. 45, 247–255 (2000).

    CAS  PubMed  Google Scholar 

  38. 38

    Kobayashi, H., Wood, M., Song, Y., Appella, E. & Celis, E. Defining promiscuous MHC class II helper T-cell epitopes for the HER2/neu tumor antigen. Cancer Res. 60, 5228–5236 (2000).

    CAS  PubMed  Google Scholar 

  39. 39

    Yu, Z., Kryzer, T.J., Griesmann, G.E., Kim, K.K., Benarroch, E., & Lennon, V.A. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann. Neurol. 49, 146–154 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the US National Institutes of Health grants CA79915 and CA85721 (to L.C.), CA37343 (to V.A.L.), CA80782 and CA82677 (to E.C.) and CA15083 (Mayo Clinic Cancer Center). We thank L. Murphy for the processing of tissue samples; L.L. Hinkley for data processing; Z. Yu for facilitating a study on the expression of B7-H1 on a lung cancer line; H. Kobayashi for advice on T-cell culture; and K. Jensen for editing the manuscript. Some of the results presented in this paper (expression of B7-H1 in human tumor lines) were presented at a National Cancer Institute Symposium, 'Tumor escape from immune recognition: Molecular mechanism and functional significance', 22–23 August 1999, Baltimore, Maryland.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lieping Chen.

Ethics declarations

Competing interests

A patent application regarding the method to enhance immune responses by blockade of B7-H1 was filed before the publication.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dong, H., Strome, S., Salomao, D. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med 8, 793–800 (2002). https://doi.org/10.1038/nm730

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing