Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke

Abstract

Thrombolytic treatment of ischemic stroke with tissue plasminogen activator (tPA) is markedly limited owing to concerns about hemorrhagic complications and the requirement that tPA be administered within 3 h of symptoms. Here we report that tPA activation of latent platelet-derived growth factor-CC (PDGF-CC) may explain these limitations. Intraventricular injection of tPA or active PDGF-CC, in the absence of ischemia, leads to significant increases in cerebrovascular permeability. In contrast, co-injection of neutralizing antibodies to PDGF-CC with tPA blocks this increased permeability, indicating that PDGF-CC is a downstream substrate of tPA within the neurovascular unit. These effects are mediated through activation of PDGF-α receptors (PDGFR-α) on perivascular astrocytes, and treatment of mice with the PDGFR-α antagonist imatinib after ischemic stroke reduces both cerebrovascular permeability and hemorrhagic complications associated with late administration of thrombolytic tPA. These data demonstrate that PDGF signaling regulates blood-brain barrier permeability and suggest potential new strategies for stroke treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Active PDGF-CC mediates tPA-induced cerebrovascular permeability.
Figure 2: tPA and PDGF-CC induce similar morphological changes in brain vasculature.
Figure 3: PDGF-CC, tPA and the PDGFR-α are expressed in the neurovascular unit.
Figure 4: PDGF-CC is expressed by astrocytes in culture.
Figure 5: Blocking PDGFR-α activation reduces cerebrovascular permeability and stroke volume after MCAO.
Figure 6: Blocking the PDGF-CC–PDGFR-α pathway reduces intracerebral hemorrhage after MCAO.

Similar content being viewed by others

References

  1. Thom, T. et al. Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113, e85–e151 (2006).

    PubMed  Google Scholar 

  2. Hou, S.T. & MacManus, J.P. Molecular mechanisms of cerebral ischemia-induced neuronal death. Int. Rev. Cytol. 221, 93–148 (2002).

    Article  CAS  Google Scholar 

  3. Marler, J.R. & Goldstein, L.B. Medicine. Stroke—tPA and the clinic. Science 301, 1677 (2003).

    Article  CAS  Google Scholar 

  4. Tsirka, S.E., Gualandris, A., Amaral, D.G. & Strickland, S. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 377, 340–344 (1995).

    Article  CAS  Google Scholar 

  5. Tsirka, S.E., Rogove, A.D., Bugge, T.H., Degen, J.L. & Strickland, S. An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J. Neurosci. 17, 543–552 (1997).

    Article  CAS  Google Scholar 

  6. Wang, Y.F. et al. Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat. Med. 4, 228–231 (1998).

    Article  CAS  Google Scholar 

  7. Nagai, N., De Mol, M., Lijnen, H.R., Carmeliet, P. & Collen, D. Role of plasminogen system components in focal cerebral ischemic infarction: a gene targeting and gene transfer study in mice. Circulation 99, 2440–2444 (1999).

    Article  CAS  Google Scholar 

  8. Yepes, M. et al. Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. Blood 96, 569–576 (2000).

    CAS  PubMed  Google Scholar 

  9. Nicole, O. et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat. Med. 7, 59–64 (2001).

    Article  CAS  Google Scholar 

  10. Cinelli, P. et al. Neuroserpin, a neuroprotective factor in focal ischemic stroke. Mol. Cell. Neurosci. 18, 443–457 (2001).

    Article  CAS  Google Scholar 

  11. Yepes, M. et al. Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent. J. Clin. Invest. 109, 1571–1578 (2002).

    Article  CAS  Google Scholar 

  12. Pawlak, R., Melchor, J.P., Matys, T., Skrzypiec, A.E. & Strickland, S. Ethanol-withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B-containing NMDA receptors. Proc. Natl. Acad. Sci. USA 102, 443–448 (2005).

    Article  CAS  Google Scholar 

  13. Tabrizi, P. et al. Tissue plasminogen activator (tPA) deficiency exacerbates cerebrovascular fibrin deposition and brain injury in a murine stroke model: studies in tPA-deficient mice and wild-type mice on a matched genetic background. Arterioscler. Thromb. Vasc. Biol. 19, 2801–2806 (1999).

    Article  CAS  Google Scholar 

  14. Zivin, J.A., Fisher, M., DeGirolami, U., Hemenway, C.C. & Stashak, J.A. Tissue plasminogen activator reduces neurological damage after cerebral embolism. Science 230, 1289–1292 (1985).

    Article  CAS  Google Scholar 

  15. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 333, 1581–1587 (1995).

  16. Zhang, Z. et al. Adjuvant treatment with neuroserpin increases the therapeutic window for tissue-type plasminogen activator administration in a rat model of embolic stroke. Circulation 106, 740–745 (2002).

    Article  CAS  Google Scholar 

  17. Yepes, M. et al. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor–related protein. J. Clin. Invest. 112, 1533–1540 (2003).

    Article  CAS  Google Scholar 

  18. Herz, J. LRP: a bright beacon at the blood-brain barrier. J. Clin. Invest. 112, 1483–1485 (2003).

    Article  CAS  Google Scholar 

  19. Wang, X. et al. Lipoprotein receptor–mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat. Med. 9, 1313–1317 (2003).

    Article  CAS  Google Scholar 

  20. Fredriksson, L., Li, H., Fieber, C., Li, X. & Eriksson, U. Tissue plasminogen activator is a potent activator of PDGF-CC. EMBO J. 23, 3793–3802 (2004).

    Article  CAS  Google Scholar 

  21. Li, X. et al. PDGF-C is a new protease-activated ligand for the PDGF-α receptor. Nat. Cell Biol. 2, 302–309 (2000).

    Article  CAS  Google Scholar 

  22. Fredriksson, L., Ehnman, M., Fieber, C. & Eriksson, U. Structural requirements for activation of latent platelet-derived growth factor CC by tissue plasminogen activator. J. Biol. Chem. 280, 26856–26862 (2005).

    Article  CAS  Google Scholar 

  23. Hart, C.E. et al. Two classes of PDGF receptor recognize different isoforms of PDGF. Science 240, 1529–1531 (1988).

    Article  CAS  Google Scholar 

  24. Polavarapu, R. et al. Tissue-type plasminogen activator–mediated shedding of astrocytic low-density lipoprotein receptor–related protein increases the permeability of the neurovascular unit. Blood 109, 3270–3278 (2007).

    Article  CAS  Google Scholar 

  25. Willnow, T.E. & Herz, J. Genetic deficiency in low density lipoprotein receptor–related protein confers cellular resistance to Pseudomonas exotoxin A. Evidence that this protein is required for uptake and degradation of multiple ligands. J. Cell Sci. 107, 719–726 (1994).

    CAS  PubMed  Google Scholar 

  26. Yu, H. et al. Control elements between −9.5 and −3.0 kb in the human tissue-type plasminogen activator gene promoter direct spatial and inducible expression to the murine brain. Eur. J. Neurosci. 14, 799–808 (2001).

    Article  CAS  Google Scholar 

  27. Hamilton, T.G., Klinghoffer, R.A., Corrin, P.D. & Soriano, P. Evolutionary divergence of platelet-derived growth factor α receptor signaling mechanisms. Mol. Cell. Biol. 23, 4013–4025 (2003).

    Article  CAS  Google Scholar 

  28. Ding, H. et al. A specific requirement for PDGF-C in palate formation and PDGFR-α signaling. Nat. Genet. 36, 1111–1116 (2004).

    Article  CAS  Google Scholar 

  29. Wolf, B.B., Lopes, M.B., VandenBerg, S.R. & Gonias, S.L. Characterization and immunohistochemical localization of α 2-macroglobulin receptor (low-density lipoprotein receptor–related protein) in human brain. Am. J. Pathol. 141, 37–42 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagai, N. et al. Tissue-type plasminogen activator has paradoxical roles in focal cerebral ischemic injury by thrombotic middle cerebral artery occlusion with mild or severe photochemical damage in mice. J. Cereb. Blood Flow Metab. 22, 648–651 (2002).

    Article  CAS  Google Scholar 

  31. Nagai, N., Suzuki, Y., Van, H.B., Lijnen, H.R. & Collen, D. Effects of plasminogen activator inhibitor-1 on ischemic brain injury in permanent and thrombotic middle cerebral artery occlusion models in mice. J. Thromb. Haemost. 3, 1379–1384 (2005).

    Article  CAS  Google Scholar 

  32. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug Discov. 1, 493–502 (2002).

    Article  CAS  Google Scholar 

  33. The National Institute of Neurological Disorders and Stroke t-PA Stroke Study Group. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke 28, 2109–2118 (1997).

  34. Larrue, V., von Kummer, R.R., Muller, A. & Bluhmki, E. Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke 32, 438–441 (2001).

    Article  CAS  Google Scholar 

  35. Thomalla, G. et al. Two tales: hemorrhagic transformation but not parenchymal hemorrhage after thrombolysis is related to severity and duration of ischemia: MRI study of acute stroke patients treated with intravenous tissue plasminogen activator within 6 hours. Stroke 38, 313–318 (2007).

    Article  Google Scholar 

  36. Vora, N.A. et al. Factors predicting hemorrhagic complications after multimodal reperfusion therapy for acute ischemic stroke. AJNR Am. J. Neuroradiol. 28, 1391–1394 (2007).

    Article  CAS  Google Scholar 

  37. Yepes, M. & Lawrence, D.A. New functions for an old enzyme: nonhemostatic roles for tissue-type plasminogen activator in the central nervous system. Exp. Biol. Med. (Maywood) 229, 1097–1104 (2004).

    Article  CAS  Google Scholar 

  38. Yepes, M. & Lawrence, D.A. Tissue-type plasminogen activator and neuroserpin: a well balanced act in the nervous system? Trends Cardiovasc. Med. 14, 173–180 (2004).

    Article  CAS  Google Scholar 

  39. Zhuo, M. et al. Role of tissue plasminogen activator receptor LRP in hippocampal long- term potentiation. J. Neurosci. 20, 542–549 (2000).

    Article  CAS  Google Scholar 

  40. Hao, Z. et al. New transgenic evidence for a system of sympathetic axons able to express tissue plasminogen activator (t-PA) within arterial/arteriolar walls. Blood 108, 200–202 (2006).

    Article  CAS  Google Scholar 

  41. Gualandris, A., Jones, T.E., Strickland, S. & Tsirka, S.E. Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator. J. Neurosci. 16, 2220–2225 (1996).

    Article  CAS  Google Scholar 

  42. Breedveld, P. et al. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res. 65, 2577–2582 (2005).

    Article  CAS  Google Scholar 

  43. Melchor, J.P. & Strickland, S. Tissue plasminogen activator in central nervous system physiology and pathology. Thromb. Haemost. 93, 655–660 (2005).

    Article  CAS  Google Scholar 

  44. Ponten, A. et al. Transgenic overexpression of platelet-derived growth factor-C in the mouse heart induces cardiac fibrosis, hypertrophy, and dilated cardiomyopathy. Am. J. Pathol. 163, 673–682 (2003).

    Article  CAS  Google Scholar 

  45. McMahon, G.A. et al. Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis. J. Biol. Chem. 276, 33964–33968 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank P. Soriano (Fred Hutchinson Cancer Research Center) for the PDGFR-α–GFP mice; A. Nagy (Samuel Lunenfeld Research Institute, Mount Sinai Hospital) for the PDGF-C–knockout mice; M. Wang, G. Schielke and D. Lombardi for helpful discussions and critical reading of the manuscript; N. Gorlatova for surface plasmon resonance analysis; and S. Rezaian and M. Wahl for technical assistance. This work was supported by National Institutes of Health grants HL55374, HL55747, HL54710 and HL57346 (to D.A.L.); HL50784 and HL54710 (to D.K.S.); NS49478 (to M.Y.); and grants from Karolinska Institutet, Novo Nordisk Foundation, Swedish Research Council, Swedish Cancer Foundation, the LeDucq Foundation and IngaBritt and Arne Lundberg Foundation (to U.E. and C.B.).

Author information

Authors and Affiliations

Authors

Contributions

E.J.S. and L.F. conceived, designed and performed the research and wrote the paper, M.G., E.F., J.C., J.A., Y.G., K.P. and K.M. performed the research, M.Y. conceived the research, D.K.S. and C.B. designed the research and contributed vital reagents, U.E. and D.A.L. conceived and designed the research and wrote the paper.

Corresponding authors

Correspondence to Ulf Eriksson or Daniel A Lawrence.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–6 and Supplementary Methods 1 and 2 (PDF 1253 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, E., Fredriksson, L., Geyer, M. et al. Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med 14, 731–737 (2008). https://doi.org/10.1038/nm1787

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1787

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing