Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes


A major challenge in transplantation medicine is controlling the very strong immune responses to foreign antigens that are responsible for graft rejection. Although immunosuppressive drugs efficiently inhibit acute graft rejection, a substantial proportion of patients suffer chronic rejection that ultimately leads to functional loss of the graft1. Induction of immunological tolerance to transplants would avoid rejection and the need for lifelong treatment with immunosuppressive drugs1,2. Tolerance to self-antigens is ensured naturally by several mechanisms3; one major mechanism depends on the activity of regulatory T lymphocytes4,5. Here we show that in mice treated with clinically acceptable levels of irradiation, regulatory CD4+CD25+Foxp3+ T cells stimulated in vitro with alloantigens induced long-term tolerance to bone marrow and subsequent skin and cardiac allografts. Regulatory T cells specific for directly presented donor antigens prevented only acute rejection, despite hematopoietic chimerism. By contrast, regulatory T cells specific for both directly and indirectly presented alloantigens prevented both acute and chronic rejection. Our findings demonstrate the potential of appropriately stimulated regulatory T cells for future cell-based therapeutic approaches to induce lifelong immunological tolerance to allogeneic transplants.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro–preactivated Foxp3+ Tregs induce long-lasting tolerance to fully allogeneic bone marrow grafts.
Figure 2: Tregs prevent acute and chronic skin allograft rejection.
Figure 3: Tregs prevent acute and chronic cardiac allograft rejection.


  1. Lechler, R.I., Sykes, M., Thomson, A.W. & Turka, L.A. Organ transplantation—how much of the promise has been realized? Nat. Med. 11, 605–613 (2005).

    Article  CAS  Google Scholar 

  2. Waldmann, H. & Cobbold, S. Exploiting tolerance processes in transplantation. Science 305, 209–212 (2004).

    Article  CAS  Google Scholar 

  3. Stockinger, B. T lymphocyte tolerance: from thymic deletion to peripheral control mechanisms. Adv. Immunol. 71, 229–265 (1999).

    Article  CAS  Google Scholar 

  4. Shevach, E.M. et al. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol. Rev. 212, 60–73 (2006).

    Article  CAS  Google Scholar 

  5. Sakaguchi, S. et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev. 212, 8–27 (2006).

    Article  CAS  Google Scholar 

  6. Izcue, A., Coombes, J.L. & Powrie, F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol. Rev. 212, 256–271 (2006).

    Article  CAS  Google Scholar 

  7. Belkaid, Y., Blank, R.B. & Suffia, I. Natural regulatory T cells and parasites: a common quest for host homeostasis. Immunol. Rev. 212, 287–300 (2006).

    Article  CAS  Google Scholar 

  8. Rouse, B.T., Sarangi, P.P. & Suvas, S. Regulatory T cells in virus infections. Immunol. Rev. 212, 272–286 (2006).

    Article  CAS  Google Scholar 

  9. Aluvihare, V.R., Kallikourdis, M. & Betz, A.G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266–271 (2004).

    Article  CAS  Google Scholar 

  10. Beyer, M. & Schultze, J.L. Regulatory T cells in cancer. Blood 108, 804–811 (2006).

    Article  CAS  Google Scholar 

  11. Joffre, O. & van Meerwijk, J.P.M. CD4+CD25+ regulatory T lymphocytes in bone marrow transplantation. Semin. Immunol. 18, 128–135 (2006).

    Article  CAS  Google Scholar 

  12. Nishimura, E., Sakihama, T., Setoguchi, R., Tanaka, K. & Sakaguchi, S. Induction of antigen-specific immunologic tolerance by in vivo and in vitro antigen-specific expansion of naturally arising Foxp3+CD25+CD4+ regulatory T cells. Int. Immunol. 16, 1189–1201 (2004).

    Article  CAS  Google Scholar 

  13. Golshayan, D. et al. In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood 109, 827–835 (2007).

    Article  CAS  Google Scholar 

  14. Thornton, A.M. & Shevach, E.M. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol. 164, 183–190 (2000).

    Article  CAS  Google Scholar 

  15. Le Moine, A. et al. Critical roles for IL-4, IL-5, and eosinophils in chronic skin allograft rejection. J. Clin. Invest. 103, 1659–1667 (1999).

    Article  CAS  Google Scholar 

  16. Rocha, P.N., Plumb, T.J., Crowley, S.D. & Coffman, T.M. Effector mechanisms in transplant rejection. Immunol. Rev. 196, 51–64 (2003).

    Article  CAS  Google Scholar 

  17. Joffre, O., Gorsse, N., Romagnoli, P., Hudrisier, D. & van Meerwijk, J.P.M. Induction of antigen-specific tolerance to bone marrow allografts with CD4+CD25+ T lymphocytes. Blood 103, 4216–4221 (2004).

    Article  CAS  Google Scholar 

  18. Sykes, M. Mixed chimerism and transplant tolerance. Immunity 14, 417–424 (2001).

    Article  CAS  Google Scholar 

  19. Boyse, E.A., Lance, E.M., Carswell, E.A., Cooper, S. & Old, L.J. Rejection of skin allografts by radiation chimaeras: selective gene action in the specification of cell surface structure. Nature 227, 901–903 (1970).

    Article  CAS  Google Scholar 

  20. Ildstad, S.T., Wren, S.M., Bluestone, J.A., Barbieri, S.A. & Sachs, D.H. Characterization of mixed allogeneic chimeras. Immunocompetence, in vitro reactivity, and genetic specificity of tolerance. J. Exp. Med. 162, 231–244 (1985).

    Article  CAS  Google Scholar 

  21. Sharabi, Y. & Sachs, D.H. Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparative regimen. J. Exp. Med. 169, 493–502 (1989).

    Article  CAS  Google Scholar 

  22. Luo, B., Chan, W.F., Shapiro, A.M. & Anderson, C.C. Non-myeloablative mixed chimerism approaches and tolerance, a split decision. Eur. J. Immunol. 37, 1233–1242 (2007).

    Article  CAS  Google Scholar 

  23. Vriesendorp, H.M. Aims of conditioning. Exp. Hematol. 31, 844–854 (2003).

    Article  Google Scholar 

  24. Cosimi, A.B. & Sachs, D.H. Mixed chimerism and transplantation tolerance. Transplantation 77, 943–946 (2004).

    Article  Google Scholar 

  25. Fudaba, Y. et al. Myeloma responses and tolerance following combined kidney and nonmyeloablative marrow transplantation: in vivo and in vitro analyses. Am. J. Transplant. 6, 2121–2133 (2006).

    Article  CAS  Google Scholar 

  26. Salama, A.D., Womer, K.L. & Sayegh, M.H. Clinical transplantation tolerance: many rivers to cross. J. Immunol. 178, 5419–5423 (2007).

    Article  CAS  Google Scholar 

  27. Jiang, S., Camara, N., Lombardi, G. & Lechler, R.I. Induction of allopeptide-specific human CD4+CD25+ regulatory T cells ex vivo. Blood 102, 2180–2186 (2003).

    Article  CAS  Google Scholar 

  28. Gorelik, L. & Flavell, R.A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12, 171–181 (2000).

    Article  CAS  Google Scholar 

  29. Coudert, J.D., Coureau, C. & Guery, J.C. Preventing NK cell activation by donor dendritic cells enhances allospecific CD4 T cell priming and promotes Th type 2 responses to transplantation antigens. J. Immunol. 169, 2979–2987 (2002).

    Article  CAS  Google Scholar 

  30. Corry, R.J., Winn, H.J. & Russell, P.S. Primarily vascularized allografts of hearts in mice. The role of H-2D, H-2K, and non-H-2 antigens in rejection. Transplantation 16, 343–350 (1973).

    Article  CAS  Google Scholar 

Download references


The authors would like to thank M.-C. Cuturi, J. Cohen and C. Reis e Sousa for valuable advice and critical comments on the manuscript, J.-C. Guéry for stimulating discussions, F. Powrie (University of Oxford, UK) and R. Flavell (Yale University) for transgenic mice, the personnel of the Institut Fédératif de Recherche 30, Institut Fédératif de Recherche 31 and Institut de Pharmacologie et de Biologie Structurale animal facilities for expert animal husbandry, F. Capilla for preparation of histological specimens, the personnel of the Institut Fédératif de Recherche 30 flow cytometry facility for technical assistance, and C. Joffre for her permanent support. This work was supported in part by grants from the Région Midi Pyrénées (nos. 01008776 and 03011999), the Etablissement Français des Greffes (2003), the Roche Organ Transplantation Research Foundation (ROTRF no. 133456773) and the Ligue Nationale contre le Cancer (no. GL/VP-4825 to O.J.).

Author information

Authors and Affiliations



O.J. and T.S. performed, and contributed to the design of, the in vitro and in vivo experiments and interpreted results; D.C. designed and performed cardiac transplantations; T.A.S. helped in the design and interpretation of histological analysis; D.H. and P.R. contributed to the design of experiments and interpretation of results; J.P.M.v.M. directed the study and wrote the paper; and all authors contributed to writing and critically reviewing the manuscript.

Corresponding author

Correspondence to Joost P M van Meerwijk.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–4 and Supplementary Notes 1–3 (PDF 3685 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Joffre, O., Santolaria, T., Calise, D. et al. Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nat Med 14, 88–92 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing