Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists

Abstract

The identification of the antigen recognition receptors for innate immunity, most notably the Toll-like receptors, has sparked great interest in therapeutic manipulation of the innate immune system. Toll-like receptor agonists are being developed for the treatment of cancer, allergies and viral infections, and as adjuvants for potent new vaccines to prevent or treat cancer and infectious diseases. As recognition grows of the role of inappropriate Toll-like receptor stimulation in inflammation and autoimmunity, significant efforts have begun to develop antagonists to Toll-like receptors as well.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Human Toll-like receptors.

Kim Caesar

References

  1. 1

    Janeway, C.A. Jr. How the immune system works to protect the host from infection: a personal view. Proc. Natl. Acad. Sci. USA 98, 7461–7468 (2001).

    CAS  PubMed  Google Scholar 

  2. 2

    Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  PubMed  Google Scholar 

  3. 3

    Sansonetti, P.J. The innate signaling of dangers and the dangers of innate signaling. Nat. Immunol. 7, 1237–1242 (2006).

    CAS  PubMed  Google Scholar 

  4. 4

    Meylan, E., Tschopp, J. & Karin, M. Intracellular pattern recognition receptors in the host response. Nature 442, 39–44 (2006).

    CAS  PubMed  Google Scholar 

  5. 5

    Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Hoebe, K. et al. TLR signaling pathways: opportunities for activation and blockade in pursuit of therapy. Curr. Pharm. Des. 12, 4123–4134 (2006).

    CAS  PubMed  Google Scholar 

  7. 7

    Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. & Hoffmann, J.A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    CAS  PubMed  Google Scholar 

  8. 8

    Hoffmann, J.A. The immune response of Drosophila. Nature 426, 33–38 (2003).

    CAS  PubMed  Google Scholar 

  9. 9

    Medzhitov, R., Preston-Hulburt, P. & Janeway, C.A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    CAS  PubMed  Google Scholar 

  10. 10

    Roach, J.C. et al. The evolution of vertebrate Toll-like receptors. Proc. Natl. Acad. Sci. USA 102, 9577–9582 (2005).

    CAS  PubMed  Google Scholar 

  11. 11

    Rock, F.L., Hardiman, G., Timans, J.C., Kastelein, R.A. & Bazan, J.F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 95, 588–593 (1998).

    CAS  PubMed  Google Scholar 

  12. 12

    Rast, J.P., Smith, L.C., Loza-Coll, M., Hibino, T. & Litman, G.W. Genomic insights into the immune system of the sea urchin. Science 314, 952–956 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Choe, J., Kelker, M.S. & Wilson, I.A. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 309, 581–585 (2005).

    CAS  PubMed  Google Scholar 

  14. 14

    Bell, J.K. et al. The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc. Natl. Acad. Sci. USA 102, 10976–10980 (2005).

    CAS  PubMed  Google Scholar 

  15. 15

    Akira, S. & Hemmi, H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett. 85, 85–95 (2003).

    CAS  PubMed  Google Scholar 

  16. 16

    Latz, E. et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 5, 190–198 (2004).

    CAS  PubMed  Google Scholar 

  17. 17

    Lee, J. et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat. Cell Biol. 8, 1327–1336 (2006).

    CAS  PubMed  Google Scholar 

  18. 18

    Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

    CAS  PubMed  Google Scholar 

  20. 20

    Hasan, U. et al. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J. Immunol. 174, 2942–2950 (2005).

    CAS  PubMed  Google Scholar 

  21. 21

    Krieg, A.M. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 5, 471–484 (2006).

    CAS  PubMed  Google Scholar 

  22. 22

    Tomai, M.A., Miller, R.L., Lipson, K.E., Vasilakos, J.P. & Woulfe, S.L. Immune response modifiers: Imiquimod and future drugs for modulating the immune response. Drug Discov. Today Ther. Strateg. [online] 3, 342–352 (2006).

    Google Scholar 

  23. 23

    Lee, J. et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 100, 6646–6651 (2003).

    CAS  PubMed  Google Scholar 

  24. 24

    Evans, J.T. et al. Enhancement of antigen-specific immunity via the TLR4 ligands MPL adjuvant and Ribi.529. Expert Rev. Vaccines 2, 219–229 (2003).

    CAS  PubMed  Google Scholar 

  25. 25

    Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    CAS  PubMed  Google Scholar 

  26. 26

    Gay, N.J., Gangloff, M. & Weber, A.N. Toll-like receptors as molecular switches. Nat. Rev. Immunol. 6, 693–698 (2006).

    CAS  PubMed  Google Scholar 

  27. 27

    Moynagh, P.N. TLR signalling and activation of IRFs: revisiting old friends from the NF-κB pathway. Trends Immunol. 26, 469–476 (2005).

    CAS  PubMed  Google Scholar 

  28. 28

    Stetson, D.B. & Medzhitov, R. Type I interferons in host defense. Immunity 25, 373–381 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Honda, K., Takaoka, A. & Taniguchi, T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25, 349–360 (2006).

    CAS  PubMed  Google Scholar 

  30. 30

    Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Hornef, M.W. & Bogdan, C. The role of epithelial Toll-like receptor expression in host defense and microbial tolerance. J. Endotoxin Res. 11, 124–128 (2005).

    CAS  PubMed  Google Scholar 

  32. 32

    Hayashi, F., Means, T.K. & Luster, A.D. Toll-like receptors stimulate human neutrophil function. Blood 102, 2660–2669 (2003).

    CAS  PubMed  Google Scholar 

  33. 33

    Butcher, E.C., Williams, M., Youngman, K., Rott, L. & Briskin, M. Lymphocyte trafficking and regional immunity. Adv. Immunol. 72, 209–253 (1999).

    CAS  PubMed  Google Scholar 

  34. 34

    Han, J. & Ulevitch, R.J. Limiting inflammatory responses during activation of innate immunity. Nat. Immunol. 6, 1198–1205 (2005).

    CAS  PubMed  Google Scholar 

  35. 35

    Steinman, R.M. & Hemmi, H. Dendritic cells: translating innate to adaptive immunity. Curr. Top. Microbiol. Immunol. 311, 17–58 (2006).

    CAS  PubMed  Google Scholar 

  36. 36

    Pulendran, B. & Ahmed, R. Translating innate immunity into immunological memory: implications for vaccine development. Cell 124, 849–863 (2006).

    CAS  PubMed  Google Scholar 

  37. 37

    Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    CAS  PubMed  Google Scholar 

  38. 38

    Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nat. Immunol. 7, 131–137 (2006).

    CAS  PubMed  Google Scholar 

  39. 39

    Colonna, M., Trinchieri, G. & Liu, Y.J. Plasmacytoid dendritic cells in immunity. Nat. Immunol. 5, 1219–1226 (2004).

    CAS  PubMed  Google Scholar 

  40. 40

    Krieg, A.M., Efler, S.M., Wittpoth, M., Al Adhami, M.J. & Davis, H.L. Induction of systemic TH1-like innate immunity in normal volunteers following subcutaneous but not intravenous administration of CPG 7909, a synthetic B-class CpG oligodeoxynucleotide TLR9 agonist. J. Immunother. 27, 460–471 (2004).

    CAS  PubMed  Google Scholar 

  41. 41

    Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    CAS  Google Scholar 

  42. 42

    Katakura, K. et al. Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J. Clin. Invest. 115, 695–702 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Datta, S.K., Cho, H.J., Takabayashi, K., Horner, A.A. & Raz, E. Antigen-immunostimulatory oligonucleotide conjugates: mechanisms and applications. Immunol. Rev. 199, 217–226 (2004).

    CAS  PubMed  Google Scholar 

  44. 44

    Dupont, J. et al. A controlled clinical trial comparing the safety and immunogenicity of a new adjuvanted hepatitis B vaccine with a standard hepatitis B vaccine. Vaccine 24, 7167–7174 (2006).

    CAS  PubMed  Google Scholar 

  45. 45

    Halperin, S.A. et al. Comparison of the safety and immunogenicity of hepatitis B virus surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide and a licensed hepatitis B vaccine in healthy young adults. Vaccine 24, 20–26 (2006).

    CAS  PubMed  Google Scholar 

  46. 46

    Harper, D.M. et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 367, 1247–1255 (2006).

    CAS  PubMed  Google Scholar 

  47. 47

    Rock, K.L. & Shen, L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol. Rev. 207, 166–183 (2005).

    CAS  PubMed  Google Scholar 

  48. 48

    Hodi, F.S. & Dranoff, G. Combinatorial cancer immunotherapy. Adv. Immunol. 90, 341–368 (2006).

    CAS  PubMed  Google Scholar 

  49. 49

    Speiser, D.E. et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest. 115, 739–746 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Krieg, A.M. Antitumor applications of stimulating toll-like receptor 9 with CpG oligodeoxynucleotides. Curr. Oncol. Rep. 6, 88–95 (2004).

    PubMed  Google Scholar 

  51. 51

    Zaks, K. et al. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J. Immunol. 176, 7335–7345 (2006).

    CAS  PubMed  Google Scholar 

  52. 52

    Cho, H.J. et al. Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat. Biotechnol. 18, 509–514 (2000).

    CAS  PubMed  Google Scholar 

  53. 53

    Wille-Reece, U. et al. HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates. Proc. Natl. Acad. Sci. USA 102, 15190–15194 (2005).

    CAS  PubMed  Google Scholar 

  54. 54

    Yarovinsky, F., Kanzler, H., Hieny, S., Coffman, R.L. & Sher, A. Toll-like receptor recognition regulates immunodominance in an antimicrobial CD4+ T cell response. Immunity 25, 655–664 (2006).

    CAS  PubMed  Google Scholar 

  55. 55

    Blander, J.M. & Medzhitov, R. On regulation of phagosome maturation and antigen presentation. Nat. Immunol. 7, 1029–1035 (2006).

    CAS  PubMed  Google Scholar 

  56. 56

    Butts, C. et al. Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J. Clin. Oncol. 23, 6674–6681 (2005).

    CAS  PubMed  Google Scholar 

  57. 57

    Marshall, J.D. et al. Polymyxin B enhances ISS-mediated immune responses across multiple species. Cell. Immunol. 229, 93–105 (2004).

    CAS  PubMed  Google Scholar 

  58. 58

    Storni, T. et al. Critical role for activation of antigen-presenting cells in priming of cytotoxic T cell responses after vaccination with virus-like particles. J. Immunol. 168, 2880–2886 (2002).

    CAS  PubMed  Google Scholar 

  59. 59

    Horner, A.A., Redecke, V. & Raz, E. Toll-like receptor ligands: hygiene, atopy and therapeutic implications. Curr. Opin. Allergy Clin. Immunol. 4, 555–561 (2004).

    CAS  PubMed  Google Scholar 

  60. 60

    Racila, D.M. & Kline, J.N. Perspectives in asthma: molecular use of microbial products in asthma prevention and treatment. J. Allergy Clin. Immunol. 116, 1202–1205 (2005).

    CAS  PubMed  Google Scholar 

  61. 61

    Tulic, M.K. et al. Amb a 1-immunostimulatory oligodeoxynucleotide conjugate immunotherapy decreases the nasal inflammatory response. J. Allergy Clin. Immunol. 113, 235–241 (2004).

    CAS  PubMed  Google Scholar 

  62. 62

    Creticos, P.S. et al. Immunotherapy with a ragweed-toll-like receptor 9 agonist vaccine for allergic rhinitis. N. Engl. J. Med. 355, 1445–1455 (2006).

    CAS  PubMed  Google Scholar 

  63. 63

    Bochner, B.S. & Busse, W.W. Allergy and asthma. J. Allergy Clin. Immunol. 115, 953–959 (2005).

    PubMed  Google Scholar 

  64. 64

    Larche, M. Immunoregulation by targeting T cells in the treatment of allergy and asthma. Curr. Opin. Immunol. 18, 745–750 (2006).

    CAS  PubMed  Google Scholar 

  65. 65

    Julia, V. et al. A restricted subset of dendritic cells captures airborne antigens and remains able to activate specific T cells long after antigen exposure. Immunity 16, 271–283 (2002).

    CAS  PubMed  Google Scholar 

  66. 66

    Gauvreau, G.M. et al. Immunostimulatory sequences regulate interferon-inducible genes but not allergic airway responses. Am. J. Respir. Crit. Care Med. 174, 15–20 (2006).

    CAS  PubMed  Google Scholar 

  67. 67

    Moisan, J. et al. TLR7 ligand prevents allergen-induced airway hyperresponsiveness and eosinophilia in allergic asthma by a MYD88-dependent and MK2-independent pathway. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L987–L995 (2006).

    CAS  PubMed  Google Scholar 

  68. 68

    Serebrisky, D. et al. CpG oligodeoxynucleotides can reverse Th2-associated allergic airway responses and alter the B7.1/B7.2 expression in a murine model of asthma. J. Immunol. 165, 5906–5912 (2000).

    CAS  PubMed  Google Scholar 

  69. 69

    Kline, J.N. et al. CpG oligodeoxynucleotides do not require TH1 cytokines to prevent eosinophilic airway inflammation in a murine model of asthma. J. Allergy Clin. Immunol. 104, 1258–1264 (1999).

    CAS  PubMed  Google Scholar 

  70. 70

    Hessel, E.M. et al. Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction. J. Exp. Med. 202, 1563–1573 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Fanucchi, M.V. et al. Immunostimulatory oligonucleotides attenuate airways remodeling in allergic monkeys. Am. J. Respir. Crit. Care Med. 170, 1153–1157 (2004).

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Coffman, R.L. & Hessel, E.M. Nonhuman primate models of asthma. J. Exp. Med. 201, 1875–1879 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Tayyari, F., Sutton, T.C., Manson, H.E. & Hegele, R.G. CpG-oligodeoxynucleotides inhibit RSV-enhanced allergic sensitisation in guinea pigs. Eur. Respir. J. 25, 295–302 (2005).

    CAS  PubMed  Google Scholar 

  74. 74

    Chang, Y.C., Madkan, V., Cook-Norris, R., Sra, K. & Tyring, S. Current and potential uses of imiquimod. South. Med. J. 98, 914–920 (2005).

    PubMed  Google Scholar 

  75. 75

    Jahrsdorfer, B. et al. Immunostimulatory oligodeoxynucleotides induce apoptosis of B cell chronic lymphocytic leukemia cells. J. Leukoc. Biol. 77, 378–387 (2005).

    PubMed  Google Scholar 

  76. 76

    Salaun, B., Coste, I., Rissoan, M.C., Lebecque, S.J. & Renno, T. TLR3 can directly trigger apoptosis in human cancer cells. J. Immunol. 176, 4894–490 1 (2006).

    CAS  PubMed  Google Scholar 

  77. 77

    Gekeler, V. et al. G3139 and other CpG-containing immunostimulatory phosphorothioate oligodeoxynucleotides are potent suppressors of the growth of human tumor xenografts in nude mice. Oligonucleotides 16, 83–93 (2006).

    CAS  PubMed  Google Scholar 

  78. 78

    Fletcher, S., Steffy, K. & Averett, D. Masked oral prodrugs of toll-like receptor 7 agonists: a new approach for the treatment of infectious disease. Curr. Opin. Investig. Drugs 7, 702–708 (2006).

    CAS  PubMed  Google Scholar 

  79. 79

    Klinman, D.M. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol. 4, 249–258 (2004).

    CAS  PubMed  Google Scholar 

  80. 80

    Amlie-Lefond, C. et al. Innate immunity for biodefense: a strategy whose time has come. J. Allergy Clin. Immunol. 116, 1334–1342 (2005).

    CAS  PubMed  Google Scholar 

  81. 81

    Rossignol, D.P. & Lynn, M. TLR4 antagonists for endotoxemia and beyond. Curr. Opin. Investig. Drugs 6, 496–502 (2005).

    CAS  PubMed  Google Scholar 

  82. 82

    Wang, T. et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat. Med. 10, 1366–1373 (2004).

    CAS  PubMed  Google Scholar 

  83. 83

    Boasso, A. et al. HIV-1 inhibits CD4+ T cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. Blood 109, 3351–3359 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Hooks, J.J. et al. Immune interferon in the circulation of patients with autoimmune disease. N. Engl. J. Med. 301, 5–8 (1979).

    CAS  PubMed  Google Scholar 

  85. 85

    Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Baechler, E.C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 100, 2610–2615 (2003).

    CAS  PubMed  Google Scholar 

  87. 87

    Baccala, R., Hoebe, K., Kono, D.H., Beutler, B. & Theofilopoulos, A.N. Toll-like receptor-dependent and-independent pathways of type I interferon induction in systemic autoimmunity. Nat. Med. 13, 543–551 (2007).

    CAS  PubMed  Google Scholar 

  88. 88

    Ronnblom, L. & Alm, G.V. Systemic lupus erythematosus and the type I interferon system. Arthritis Res. Ther. 5, 68–75 (2003).

    PubMed  PubMed Central  Google Scholar 

  89. 89

    Van Ghelue, M., Moens, U., Bendiksen, S. & Rekvig, O.P. Autoimmunity to nucleosomes related to viral infection: a focus on hapten-carrier complex formation. J. Autoimmun. 20, 171–182 (2003).

    CAS  PubMed  Google Scholar 

  90. 90

    Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198, 513–520 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    CAS  PubMed  Google Scholar 

  92. 92

    Barrat, F.J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Means, T.K. et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest. 115, 407–417 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Vollmer, J. et al. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J. Exp. Med. 202, 1575–1585 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Lenert, P.S. Targeting Toll-like receptor signaling in plasmacytoid dendritic cells and autoreactive B cells as a therapy for lupus. Arthritis Res. Ther. 8, 203 (2006).

    PubMed  PubMed Central  Google Scholar 

  96. 96

    Barton, G.M., Kagan, J.C. & Medzhitov, R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat. Immunol. 7, 49–56 (2006).

    CAS  PubMed  Google Scholar 

  97. 97

    Jiang, D. et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat. Med. 11, 1173–1179 (2005).

    CAS  PubMed  Google Scholar 

  98. 98

    Mollen, K.P. et al. Emerging paradigm: toll-like receptor 4-sentinel for the detection of tissue damage. Shock 26, 430–437 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Matray for critical reading of the manuscript and J. Carroll for help with research on the status of clinical programs.

Author information

Affiliations

Authors

Ethics declarations

Competing interests

H.K., F.J.B., E.M.H. and R.L.C. are employees of Dynavax Technologies, a company that is developing products targeting TLR9 to treat or prevent allergies, infectious diseases, cancer and autoimmunity.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kanzler, H., Barrat, F., Hessel, E. et al. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 13, 552–559 (2007). https://doi.org/10.1038/nm1589

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing