Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Requirement for CD44 in homing and engraftment of BCR-ABL–expressing leukemic stem cells


In individuals with chronic myeloid leukemia (CML) treated by autologous hematopoietic stem cell (HSC) transplantation, malignant progenitors in the graft contribute to leukemic relapse1, but the mechanisms of homing and engraftment of leukemic CML stem cells are unknown. Here we show that CD44 expression is increased on mouse stem-progenitor cells expressing BCR-ABL and that CD44 contributes functional E-selectin ligands. In a mouse retroviral transplantation model of CML, BCR-ABL1–transduced progenitors from CD44-mutant donors are defective in homing to recipient marrow, resulting in decreased engraftment and impaired induction of CML-like myeloproliferative disease. By contrast, CD44-deficient stem cells transduced with empty retrovirus engraft as efficiently as do wild-type HSCs. CD44 is dispensable for induction of acute B-lymphoblastic leukemia by BCR-ABL, indicating that CD44 is specifically required on leukemic cells that initiate CML. The requirement for donor CD44 is bypassed by direct intrafemoral injection of BCR-ABL1–transduced CD44-deficient stem cells or by coexpression of human CD44. Antibody to CD44 attenuates induction of CML-like leukemia in recipients. These results show that BCR-ABL–expressing leukemic stem cells depend to a greater extent on CD44 for homing and engraftment than do normal HSCs, and argue that CD44 blockade may be beneficial in autologous transplantation in CML.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: CD44 is increased on BCR-ABL–expressing CML-initiating cells and required for homing and engraftment.
Figure 2: Donor CD44 is not required for engraftment of B-ALL–initiating cells.
Figure 3: Engraftment defect of BCR-ABL1–transduced Cd44−/− progenitors is rescued by direct intrafemoral injection or by coexpression of human CD44s.
Figure 4: CD44-specific antibody treatment prolongs survival of recipients of BCR-ABL1–transduced progenitors.


  1. Deisseroth, A.B. et al. Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML. Blood 83, 3068–3076 (1994).

    CAS  PubMed  Google Scholar 

  2. Wang, J.C. & Dick, J.E. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 15, 494–501 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Jamieson, C.H.M. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Li, S., Ilaria, R.L., Million, R.P., Daley, G.Q. & Van Etten, R.A. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J. Exp. Med. 189, 1399–1412 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huntly, B.J. et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6, 587–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Graham, S.M. et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99, 319–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Verfaillie, C.M. et al. BCR/ABL-negative primitive progenitors suitable for transplantation can be selected from the marrow of most early-chronic phase but not accelerated-phase chronic myelogenous leukemia patients. Blood 87, 4770–4779 (1996).

    CAS  PubMed  Google Scholar 

  8. Luger, S.M. et al. Oligodeoxynucleotide-mediated inhibition of c-myb gene expression in autografted bone marrow: a pilot study. Blood 99, 1150–1158 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Barnett, M.J. et al. Autografting with cultured marrow in chronic myeloid leukemia: results of a pilot study. Blood 84, 724–732 (1994).

    CAS  PubMed  Google Scholar 

  10. Lapidot, T., Dar, A. & Kollet, O. How do stem cells find their way home? Blood 106, 1901–1910 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Mazo, I.B. et al. Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J. Exp. Med. 188, 465–474 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Papayannopoulou, T., Priestley, G.V., Nakamoto, B., Zafiropoulos, V. & Scott, L.M. Molecular pathways in bone marrow homing: dominant role of α4β1 over β2-integrins and selectins. Blood 98, 2403–2411 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Peled, A. et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95, 3289–3296 (2000).

    CAS  PubMed  Google Scholar 

  14. Bhatia, R. & Verfaillie, C.M. Inhibition of BCR-ABL expression with antisense oligodeoxynucleotides restores β1 integrin–mediated adhesion and proliferation inhibition in chronic myelogenous leukemia hematopoietic progenitors. Blood 91, 3414–3422 (1998).

    CAS  PubMed  Google Scholar 

  15. Salgia, R. et al. The BCR/ABL oncogene alters the chemotactic response to stromal-derived factor-1a. Blood 94, 4233–4246 (1999).

    CAS  PubMed  Google Scholar 

  16. Krause, D.S., von Andrian, U.H. & Van Etten, R.A. Selectins and their ligands are required for homing and engraftment of BCR-ABL+ leukemia-initiating cells. Blood 106, (Suppl. 1), 206a (2005).

    Google Scholar 

  17. Dimitroff, C.J., Lee, J.Y., Fuhlbrigge, R.C. & Sackstein, R. A distinct glycoform of CD44 is an L-selectin ligand on human hematopoietic cells. Proc. Natl. Acad. Sci. USA 97, 13841–13846 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Katayama, Y., Hidalgo, A., Chang, J., Peired, A. & Frenette, P.S. CD44 is a physiological E-selectin ligand on neutrophils. J. Exp. Med. 201, 1183–1189 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghaffari, S., Dougherty, G.J., Lansdorp, P.M., Eaves, A.C. & Eaves, C.J. Differentiation-associated changes in CD44 isoform expression during normal hematopoiesis and their alteration in chronic myeloid leukemia. Blood 86, 2976–2985 (1995).

    CAS  PubMed  Google Scholar 

  20. Protin, U., Schweighoffer, T., Jochum, W. & Hilberg, F. CD44-deficient mice develop normally with changes in subpopulations and recirculation of lymphocyte subsets. J. Immunol. 163, 4917–4923 (1999).

    CAS  PubMed  Google Scholar 

  21. Roumiantsev, S., de Aos, I., Varticovski, L., Ilaria, R.L. & Van Etten, R.A. The Src homology 2 domain of Bcr/Abl is required for efficient induction of chronic myeloid leukemia-like disease in mice but not for lymphoid leukemogenesis or activation of phosphatidylinositol 3-kinase. Blood 97, 4–13 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Schmits, R. et al. CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity. Blood 90, 2217–2233 (1997).

    CAS  PubMed  Google Scholar 

  23. Oostendorp, R.A., Ghaffari, S. & Eaves, C.J. Kinetics of in vivo homing and recruitment into cycle of hematopoietic cells are organ-specific but CD44-independent. Bone Marrow Transplant. 26, 559–566 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Li, S. et al. Interleukin-3 and granulocyte-macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood 97, 1442–1450 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Weninger, W., Crowley, M.A., Manjunath, N. & von Andrian, U.H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 194, 953–966 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mazurier, F., Doedens, M., Gan, O.I. & Dick, J.E. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat. Med. 9, 959–963 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Ponta, H., Sherman, L. & Herrlich, P.A. CD44: from adhesion molecules to signalling regulators. Nat. Rev. Mol. Cell Biol. 4, 33–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Vermeulen, M. et al. Role of adhesion molecules in the homing and mobilization of murine hematopoietic stem and progenitor cells. Blood 92, 894–900 (1998).

    CAS  PubMed  Google Scholar 

  29. Khaldoyanidi, S., Denzel, A. & Zoller, M. Requirement for CD44 in proliferation and homing of hematopoietic precursor cells. J. Leukoc. Biol. 60, 579–592 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Avigdor, A. et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 103, 2981–2989 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references


We thank J.E. Dick for advice about intrafemoral injections and I. Mazo for assistance with flow cytometry. This work was supported by the US National Institutes of Health (grant HL56949 to U.H.v.A. and R.A.V.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Richard A Van Etten.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Serial flow cytometric analysis of peripheral blood from a representative WT recipient of BCR-ABL1–transduced Cd44−/− BM that did not develop fatal CML-like leukemia. (PDF 86 kb)

Supplementary Fig. 2

Flow cytometric analysis of primary B-lymphoid progenitors from WT or Cd44−/− (CD44 KO) donors, transformed in vitro (Roumiantsev et al., Blood 97, 4–13 (2001)) with retrovirus co-expressing BCR-ABL and either GFP (B-A + GFP) or human CD44s (B-A + huCD44). (PDF 88 kb)

Supplementary Table 1

Quantitation of engrafting proviral clones in leukemic cohorts. (PDF 37 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krause, D., Lazarides, K., von Andrian, U. et al. Requirement for CD44 in homing and engraftment of BCR-ABL–expressing leukemic stem cells. Nat Med 12, 1175–1180 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing