Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Host-reactive CD8+ memory stem cells in graft-versus-host disease

Abstract

Graft-versus-host disease (GVHD) is caused by alloreactive donor T cells that trigger host tissue injury. GVHD develops over weeks or months, but how this immune response is maintained over time is unknown. In mouse models of human GVHD, we identify a new subset of postmitotic CD44loCD62LhiCD8+ T cells that generate and sustain all allogeneic T-cell subsets in GVHD reactions, including central memory, effector memory and effector CD8+ T cells, while self-renewing. These cells express Sca-1, CD122 and Bcl-2, and induce GVHD upon transfer into secondary recipients. The postmitotic CD44loCD62LhiCD8+ T cells persist throughout the course of GVHD, are generated in the initial phase in response to alloantigens and dendritic cells and require interleukin-15. Thus, their long life, ability to self-renew and multipotentiality define these cells as candidate memory stem cells. Memory stem cells will be important targets for understanding and influencing diverse chronic immune reactions, including GVHD.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Identification of postmitotic CD44loCD62LhiCD8+ T cells.
Figure 2: CD44loCD62LhiCD8+ memory stem T cells induce GVH responses.
Figure 3: Host minor H antigen H60-driven development of postmitotic CD44loCD62LhiCD8+ T cells.
Figure 4: Characterization of postmitotic CD44loCD62LhiCD8+ T cells.
Figure 5: Postmitotic CD44loCD62Lhi CD8+ T cells develop during the initial phase of GVH reactions.
Figure 6: Development of postmitotic CD44loCD62LhiCD8+ T cells depends on both DCs and IL-15.

References

  1. Fearon, D.T., Manders, P. & Wagner, S.D. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 293, 248–250 (2001).

    Article  CAS  Google Scholar 

  2. Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol. 2, 982–987 (2002).

    Article  CAS  Google Scholar 

  3. Callan, M.F. et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J. Exp. Med. 187, 1395–1402 (1998).

    Article  CAS  Google Scholar 

  4. Homann, D., Teyton, L. & Oldstone, M.B. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat. Med. 7, 913–919 (2001).

    Article  CAS  Google Scholar 

  5. Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111 (2001).

    Article  CAS  Google Scholar 

  6. Kaech, S.M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002).

    Article  CAS  Google Scholar 

  7. Monsurro, V. et al. Quiescent phenotype of tumor-specific CD8+ T cells following immunization. Blood 104, 1970–1978 (2004).

    Article  CAS  Google Scholar 

  8. Wherry, E.J., Barber, D.L., Kaech, S.M., Blattman, J.N. & Ahmed, R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc. Natl Acad. Sci. USA 101, 16004–16009 (2004).

    Article  CAS  Google Scholar 

  9. Gattorno, M. et al. Phenotypic and functional characterisation of CCR7+ and CCR7- CD4+ memory T cells homing to the joints in juvenile idiopathic arthritis. Arthritis Res. Ther. 7, R256–R267 (2005).

    Article  CAS  Google Scholar 

  10. Blazar, B.R., Korngold, R. & Vallera, D.A. Recent advances in graft-versus-host disease (GVHD) prevention. Immunol. Rev. 157, 79–109 (1997).

    Article  CAS  Google Scholar 

  11. Goker, H., Haznedaroglu, I.C. & Chao, N.J. Acute graft-vs-host disease: pathobiology and management. Exp. Hematol. 29, 259–277 (2001).

    Article  CAS  Google Scholar 

  12. Ho, V.T. & Soiffer, R.J. The history and future of T-cell depletion as graft-versus-host disease prophylaxis for allogeneic hematopoietic stem cell transplantation. Blood 98, 3192–3204 (2001).

    Article  CAS  Google Scholar 

  13. Ferrara, J.L., Cooke, K.R. & Teshima, T. The pathophysiology of acute graft-versus-host disease. Int. J. Hematol. 78, 181–187 (2003).

    Article  CAS  Google Scholar 

  14. Higman, M.A. & Vogelsang, G.B. Chronic graft versus host disease. Br. J. Haematol. 125, 435–454 (2004).

    Article  Google Scholar 

  15. Jameson, S.C. Maintaining the norm: T-cell homeostasis. Nat. Rev. Immunol. 2, 547–556 (2002).

    Article  CAS  Google Scholar 

  16. Kaech, S.M., Wherry, E.J. & Ahmed, R. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262 (2002).

    Article  CAS  Google Scholar 

  17. Yamashita, K. et al. Severe chronic graft-versus-host disease is characterized by a preponderance of CD4(+) effector memory cells relative to central memory cells. Blood 103, 3986–3988 (2004).

    Article  CAS  Google Scholar 

  18. Sprent, J. & Tough, D.F. T cell death and memory. Science 293, 245–248 (2001).

    Article  CAS  Google Scholar 

  19. Wherry, E.J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  Google Scholar 

  20. Manjunath, N. et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J. Clin. Invest. 108, 871–878 (2001).

    Article  CAS  Google Scholar 

  21. Jacob, J. & Baltimore, D. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399, 593–597 (1999).

    Article  CAS  Google Scholar 

  22. Lauvau, G. et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294, 1735–1739 (2001).

    Article  CAS  Google Scholar 

  23. Oehen, S. & Brduscha-Riem, K. Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J. Immunol. 161, 5338–5346 (1998).

    CAS  PubMed  Google Scholar 

  24. Opferman, J.T., Ober, B.T. & Ashton-Rickardt, P.G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283, 1745–1748 (1999).

    Article  CAS  Google Scholar 

  25. Walzer, T., Arpin, C., Beloeil, L. & Marvel, J. Differential in vivo persistence of two subsets of memory phenotype CD8 T cells defined by CD44 and CD122 expression levels. J. Immunol. 168, 2704–2711 (2002).

    Article  CAS  Google Scholar 

  26. Zhang, Y. et al. Dendritic cell-activated CD44hiCD8+ T cells are defective in mediating acute graft-versus-host disease but retain graft-versus-leukemia activity. Blood 103, 3970–3978 (2004).

    Article  CAS  Google Scholar 

  27. Giver, C.R., Li, J.M., Hossain, M.S., Lonial, S. & Waller, E.K. Reconstructing immunity after allogeneic transplantation. Immunol. Res. 29, 269–282 (2004).

    Article  CAS  Google Scholar 

  28. Foster, A.E. et al. Human CD62L- memory T cells are less responsive to alloantigen stimulation than CD62L+ naive T cells: potential for adoptive immunotherapy. Blood 104, 2403–2409 (2004).

    Article  CAS  Google Scholar 

  29. Chen, B.J., Cui, X., Sempowski, G.D., Liu, C. & Chao, N.J. Transfer of allogeneic CD62L- memory T cells without graft-versus-host disease. Blood 103, 1534–1541 (2004).

    Article  CAS  Google Scholar 

  30. Anderson, B.E. et al. Memory CD4+ T cells do not induce graft-versus-host disease. J. Clin. Invest. 112, 101–108 (2003).

    Article  CAS  Google Scholar 

  31. Zhang, Y., Joe, G., Hexner, E., Zhu, J. & Emerson, S.G. Alloreactive memory T cells are responsible for the persistence of graft-versus-host disease. J. Immunol. 174, 3051–3058 (2005).

    Article  CAS  Google Scholar 

  32. Favre, A. et al. Immunohistochemical study of skin lesions in acute and chronic graft versus host disease following bone marrow transplantation. Am. J. Surg. Pathol. 21, 23–34 (1997).

    Article  CAS  Google Scholar 

  33. Diamond, D.J., Chang, K.L., Jenkins, K.A. & Forman, S.J. Immunohistochemical analysis of T cell phenotypes in patients with graft-versus-host disease following allogeneic bone marrow transplantation. Transplantation 59, 1436–1444 (1995).

    Article  CAS  Google Scholar 

  34. Watt, F.M. & Hogan, B.L. Out of eden: stem cells and their niches. Science 287, 1427–1430 (2000).

    Article  CAS  Google Scholar 

  35. Zhang, Y., Louboutin, J.P., Zhu, J., Rivera, A.J. & Emerson, S.G. Preterminal host dendritic cells in irradiated mice prime CD8+ T cell-mediated acute graft-versus-host disease. J. Clin. Invest. 109, 1335–1344 (2002).

    Article  CAS  Google Scholar 

  36. Sprent, J. Turnover of memory-phenotype CD8+ T cells. Microbes Infect. 5, 227–231 (2003).

    Article  CAS  Google Scholar 

  37. Weng, N.P., Liu, K., Catalfamo, M., Li, Y. & Henkart, P.A. IL-15 is a growth factor and an activator of CD8 memory T cells. Ann. NY Acad. Sci. 975, 46–56 (2002).

    Article  CAS  Google Scholar 

  38. Wherry, E.J. & Ahmed, R. Memory CD8 T-cell differentiation during viral infection. J. Virol. 78, 5535–5545 (2004).

    Article  CAS  Google Scholar 

  39. Lodolce, J. et al. Interleukin-15 and the regulation of lymphoid homeostasis. Mol. Immunol. 39, 537–544 (2002).

    Article  CAS  Google Scholar 

  40. Becker, T.C. et al. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med. 195, 1541–1548 (2002).

    Article  CAS  Google Scholar 

  41. Berard, M., Brandt, K., Bulfone-Paus, S. & Tough, D.F. IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J. Immunol. 170, 5018–5026 (2003).

    Article  CAS  Google Scholar 

  42. Schluns, K.S., Williams, K., Ma, A., Zheng, X.X. & Lefrancois, L. Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J. Immunol. 168, 4827–4831 (2002).

    Article  CAS  Google Scholar 

  43. Blaser, B.W. et al. Donor-derived IL-15 is critical for acute allogeneic graft-versus-host disease. Blood 105, 894–901 (2005).

    Article  CAS  Google Scholar 

  44. Shlomchik, W.D. et al. Prevention of graft versus host disease by inactivation of host antigen- presenting cells. Science 285, 412–415 (1999).

    Article  CAS  Google Scholar 

  45. Matte, C.C. et al. Donor APCs are required for maximal GVHD but not for GVL. Nat. Med. 10, 987–992 (2004).

    Article  CAS  Google Scholar 

  46. Duffner, U.A. et al. Host dendritic cells alone are sufficient to initiate acute graft-versus-host disease. J. Immunol. 172, 7393–7398 (2004).

    Article  CAS  Google Scholar 

  47. Zhang, Y. et al. Bifurcated dendritic cell differentiation in vitro from murine lineage phenotype-negative c-kit+ bone marrow hematopoietic progenitor cells. Blood 92, 118–128 (1998).

    CAS  PubMed  Google Scholar 

  48. Cooke, K.R. et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood 88, 3230–3239 (1996).

    CAS  PubMed  Google Scholar 

  49. del Rosario, M.L., Zucali, J.R. & Kao, K.J. Prevention of graft-versus-host disease by induction of immune tolerance with ultraviolet B-irradiated leukocytes in H-2 disparate bone marrow donor. Blood 93, 3558–3564 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the pathology support given by D. Frank (Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine). This work is supported by a grant from the Specialized Center for Research from the Leukemia and Lymphoma Society of America and by grant RO1 CA102464-01 from US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G Emerson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Transplantation of B6/SJL mice with C3H.SW CD44loCD8+ T cells together with B6/SJL TCDBM induces acute GVHD, and generates donor day 42 CD44loCD62LhiCD8+ T cells. (PDF 252 kb)

Supplementary Fig. 2

Mature DCs stimulate the survival of CD8+ T cells. (PDF 54 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, Y., Joe, G., Hexner, E. et al. Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nat Med 11, 1299–1305 (2005). https://doi.org/10.1038/nm1326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1326

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing