Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease

Abstract

MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) damages dopaminergic neurons as seen in Parkinson disease. Here we show that after administration of MPTP to mice, there was a robust gliosis in the substantia nigra pars compacta associated with significant upregulation of inducible nitric oxide synthase (iNOS). These changes preceded or paralleled MPTP-induced dopaminergic neurodegeneration. We also show that mutant mice lacking the iNOS gene were significantly more resistant to MPTP than their wild-type littermates. This study demonstrates that iNOS is important in the MPTP neurotoxic process and indicates that inhibitors of iNOS may provide protective benefit in the treatment of Parkinson disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MPTP-induced glial reaction.
Figure 2: MPTP-induced iNOS upregulation.
Figure 3: MPTP-induced neuronal loss and microglial reaction in iNOS–/– mice.

Similar content being viewed by others

References

  1. Fahn, S. in Cecil's Textbook of Medicine vol.18 (eds. Wyngaarden, J.B. & Smith, L.H.Jr.) 2143–2147 (Saunders, Philadelphia, 1988).

    Google Scholar 

  2. Pakkenberg, B., Moller, A., Gundersen, H.J.G., Mouritzen, A. & Pakkenberg, H. The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson's disease estimated with an unbiased stereological method. J. Neurol. Neurosurg. Psychiat. 54, 30–33 (1991).

    Article  CAS  Google Scholar 

  3. Hornykiewicz, O. & Kish, S.J. in Parkinson's Ddisease (eds. Yahr, M. & Bergmann, K.J.) 19– 34 (Raven, New York, 1987).

    Google Scholar 

  4. Kostic, V., Przedborski, S., Flaster, E. & Sternic, N. Early development of levodopa-induced dyskinesias and response fluctuations in young-onset Parkinson's disease. Neurology 41, 202–205 (1991).

    Article  CAS  Google Scholar 

  5. Langston, J.W. & Irwin, I. MPTP: current concepts and controversies. Clin. Neuropharmacol. 9, 485– 507 (1986).

    Article  CAS  Google Scholar 

  6. Przedborski, S. & Jackson-Lewis, V. Mechanisms of MPTP toxicity. Mov. Disord. 13, 35– 38 (1998).

    Google Scholar 

  7. Przedborski, S. & Jackson-Lewis, V. Experimental developments in movement disorders: update on proposed free radical mechanisms. Curr. Opin. Neurol 11, 335– 339 (1998).

    Article  CAS  Google Scholar 

  8. Dawson, T.M. & Dawson, V.L. Nitric oxide synthase: role as a transmitter/mediator in the brain and endocrine system. Annu. Rev. Med. 47, 219–227 (1996).

    Article  CAS  Google Scholar 

  9. Bredt, D.S., Glatt, C.E., Huang, P.L., Fotuhi, M., Dawson, T.M. & Snyder, S.H. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7, 615–624 (1991).

    Article  CAS  Google Scholar 

  10. Huang, P.L., Dawson, T.M., Bredt, D.S., Snyder, S.H. & Fishman, M.C. Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75, 1273 –1285 (1993).

    Article  CAS  Google Scholar 

  11. Lowenstein, C.J., Glatt, C.S., Bredt, D.S. & Snyder, S.H. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc. Natl. Acad. Sci. USA 89, 6711– 6715 (1992).

    Article  CAS  Google Scholar 

  12. Keilhoff, G. et al. Patterns of nitric oxide synthase at the messenger RNA and protein levels during early rat brain development. Neuroscience 75, 1193–1201 (1996).

    Article  CAS  Google Scholar 

  13. Simmons, M.L. & Murphy, S. Induction of nitric oxide synthase in glial cells. J. Neurochem. 59, 897– 905 (1992).

    Article  CAS  Google Scholar 

  14. Wallace, M.N. & Fredens, K. Activated astrocytes of the mouse hippocampus contain high levels of NADPH-diaphorase. Neuroreport 3, 953–956 (1992).

    Article  CAS  Google Scholar 

  15. Iadecola, C., Xu, X., Zhang, F., el-Fakahany, E.E. & Ross, M.E. Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 15, 52–59 (1995).

    Article  CAS  Google Scholar 

  16. Hara, H. et al. Brain distribution of nitric oxide synthase in neuronal or endothelial nitric oxide synthase mutant mice using [3H]L-NG-nitro-arginine autoradiography. Neuroscience 75, 881–890 (1996).

    Article  CAS  Google Scholar 

  17. Dinerman, J.L., Dawson, T.M., Schell, M.J., Snowman, A. & Snyder, S.H. Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc. Natl. Acad. Sci. USA 91, 4214– 4218 (1994).

    Article  CAS  Google Scholar 

  18. Dawson, T.M. & Dawson, V.L. in Nitric oxide. Sources and Detection of NO; NO Synthase (ed. Packer, L.) 349–358 (Academic, New York, 1996).

    Book  Google Scholar 

  19. Schulz, J.B., Matthews, R.T., Muqit, M.M.K., Browne, S.E. & Beal, M.F. Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J. Neurochem. 64, 936– 939 (1995).

    Article  CAS  Google Scholar 

  20. Przedborski, S. et al. Role of neuronal nitric oxide in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced dopaminergic neurotoxicity. Proc. Natl. Acad. Sci. USA 93, 4565–4571 (1996).

    Article  CAS  Google Scholar 

  21. Hantraye, P. et al. Inhibition of neuronal nitric oxide synthase prevents MPTP- induced parkinsonism in baboons. Nature Med. 2, 1017–1021 (1996).

    Article  CAS  Google Scholar 

  22. Matthews, R.T., Yang, L.C. & Beal, M.F. S-methylthiocitrulline, a neuronal nitric oxide synthase inhibitor, protects against malonate and MPTP neurotoxicity. Exp. Neurol. 143, 282–286 (1997).

    Article  CAS  Google Scholar 

  23. Hunot, S. et al. Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience 72, 355– 363 (1996).

    Article  CAS  Google Scholar 

  24. Adamson, D.C. et al. Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. Science 274, 1917–1921 (1996).

    Article  CAS  Google Scholar 

  25. Nathan, C. & Xie, Q.W. Regulation of biosynthesis of nitric oxide. J. Biol. Chem. 269, 13725– 13728 (1994).

    CAS  Google Scholar 

  26. Giovanni, A., Sieber, B.A., Heikkila, R.E. & Sonsalla, P.K. Correlation between the neostriatal content of the 1-methyl-4-phenylpyridinium species and dopaminergic neurotoxicity following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration to several strains of mice. J. Pharmacol. Exp. Ther. 257, 691–697 (1991).

    CAS  Google Scholar 

  27. Forno, L.S., DeLanney, L.E., Irwin, I., Di Monte, D. & Langston, J.W. Astrocytes and Parkinson's disease. Prog. Brain Res. 94, 429– 436 (1992).

    Article  CAS  Google Scholar 

  28. Hirsch, E.C., Hunot, S., Damier, P. & Faucheux, B. Glial cells and inflammation in Parkinsons' disease: a role in neurodegeneration? Ann. Neurol. 44 (Suppl. 1), S115–S120 (1998).

    Article  CAS  Google Scholar 

  29. Ridet, J.L., Malhotra, S.K., Privat, A. & Gage, F.H. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20, 570–577 (1997).

    Article  CAS  Google Scholar 

  30. Gonzalez-Scarano, F. & Baltuch, G. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22, 219–240 (1999).

    Article  CAS  Google Scholar 

  31. Jackson-Lewis, V., Jakowec, M., Burke, R.E. & Przedborski, S. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 4, 257– 269 (1995).

    Article  CAS  Google Scholar 

  32. Xia, Y. & Zweier, J.L. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc. Natl. Acad. Sci. USA 94, 6954–6958 (1997).

    Article  CAS  Google Scholar 

  33. Murphy, S. et al. Synthesis of nitric oxide in CNS glial cells. Trends Neurosci. 16, 323–328 (1993).

    Article  CAS  Google Scholar 

  34. Galea, E., Feinstein, D.L. & Reis, D.J. Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc. Natl. Acad. Sci. USA 89, 10945–10949 (1992).

    Article  CAS  Google Scholar 

  35. Garcion, E. et al. Expression of inducible nitric oxide synthase during rat brain inflammation: Regulation by 1,25-dihydroxyvitamin D3. Glia 22, 282–294 (1998).

    Article  CAS  Google Scholar 

  36. Dugas, N. et al. Regulation by endogenous interleukin 10 of the expression of nitric oxide synthase induced after ligation of CD23 in human macrophages. Cytokine. 10, 680–689 (1998).

    Article  CAS  Google Scholar 

  37. Hunot, S. et al. FcεRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J. Neurosci. 19, 3440– 3447 (1999).

    Article  CAS  Google Scholar 

  38. MacMicking, J., Xie, Q.-W. & Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323–350 (1997).

    Article  CAS  Google Scholar 

  39. Halliwell, B. & Gutteridge, J.M. in Free Radicals in Biology and Medicine (Clarendon, Oxford, 1991).

    Google Scholar 

  40. MacMicking, J. et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81, 641–650 (1995).

    Article  CAS  Google Scholar 

  41. Nathan, C. & Root, R.K. Hydrogen peroxide release from mouse peritoneal macrophages. Dependence on sequential activation and triggering. J. Exp. Med. 146, 1648– 1662 (1977).

    Article  CAS  Google Scholar 

  42. Leonard, C.S., Kerman, I., Blaha, G., Taveras, E. & Taylor, B. Interdigitation of nitric oxide synthase-, tyrosine hydroxylase-, and serotonin-containing neurons in and around the laterodorsal and pedunculopontine tegmental nuclei of the guinea pig. J. Comp. Neurol. 362, 411–432 (1995).

    Article  CAS  Google Scholar 

  43. Dawson, T.M. & Snyder, S.H. Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J. Neurosci. 14, 5147–5159 (1994).

    Article  CAS  Google Scholar 

  44. Beckman, J.S. et al. Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch. Biochem. Biophys. 298, 438–445 (1992).

    Article  CAS  Google Scholar 

  45. Ara, J. et al. Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc. Natl. Acad. Sci. USA 95, 7659– 7663 (1998).

    Article  CAS  Google Scholar 

  46. Almer, G., Vukosavic, S., Romero, N. & Przedborski, S. Inducible nitric oxide synthase upregulation in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 72, 2415–2425 (1999).

    Article  CAS  Google Scholar 

  47. Asmus, S.E. & Newman, S.W. Colocalization of tyrosine hydroxylase and Fos in the male Syrian hamster brain following different states of arousal. J. Neurobiol. 25, 156– 168 (1994).

    Article  CAS  Google Scholar 

  48. Mandir, A.S. et al. Poly (ADP-ribose) polymerase activation mediates MPTP-induced parkinsonism. Proc. Natl. Acad. Sci. USA 96, 5774–5779 (1999).

    Article  CAS  Google Scholar 

  49. Coggeshall, R.E. & Lekan, H.A. Methods for determining numbers of cells and synapses: a case for more uniform standards of review. J. Comp. Neurol. 364, 6– 15 (1996).

    Article  CAS  Google Scholar 

  50. West, M.J. New stereological methods for counting neurons. Neurobiol. Aging 14, 275–285 (1993).

    Article  CAS  Google Scholar 

  51. Ye, Y.Z., Strong, M., Huang, Z.-Q. & Beckman, J.S. in Nitric Oxide. Physiological and Pathological Processes (ed. Packer, L.) 201– 209 (Acedemic, New York, 1996).

    Book  Google Scholar 

Download references

Acknowledgements

We thank V.H. Perry and J. Goldman for their advice on the glial studies; H. Ischiropoulos for his guidance on the nitrotyrosine studies; and N. Romero and D. Guestella for their assistance in maintaining and genotyping the iNOS mutant mice. This study was supported by National Institute of Neurological Disorders and Stroke grant R29 NS37345, RO1 NS38586 and P50 NS38370, and US Department of Defense contract number DAMD 17-99-1-9474 (S.P.); the Lowenstein Foundation and the Parkinson's Disease Foundation (G.L., V.J-L., S.P.); National Institutes of Health/National Institute of Neurological Disorders and Stroke grant P50 NS38377; the Mitchell Family foundation (A.S.M, V.L.D, T.M.D); Public Health Service/Career Investigator Development Award grant NS 1K08N2035; and the American Parkinson Disease Association (A.S.M). M.V. is recipient of a fellowship from the Human Frontier Science Program Organization, and S.P. is recipient of the Cotzias Award from the American Parkinson Disease Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Przedborski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liberatore, G., Jackson-Lewis, V., Vukosavic, S. et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5, 1403–1409 (1999). https://doi.org/10.1038/70978

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70978

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing