Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vaccine requirements for sustained cellular immunity to an intracellular parasitic infection

Abstract

The humoral immunity induced by many viral and bacterial vaccines mediates protection that is maintained over a long period of time. In contrast, for other intracellular infections (such as with Leishmania major or Mycobacterium tuberculosis ) for which cell-mediated immunity is required for protection, the mechanisms for developing durable responses after vaccination have not been well defined. Here we demonstrate that vaccination with plasmid DNA encoding a specific leishmanial antigen is more effective than leishmanial protein plus recombinant IL-12 in eliciting long-term immunity capable of controlling L. major infection. We also show that leishmanial protein plus IL-12 DNA produces an immunity that lasts much longer than does immunity elicited by leishmanial protein plus IL-12 protein, indicating that the persistence of IL-12 may be the essential determinant in maintaining durable cell-mediated immune responses for an intracellular parasitic infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LACK DNA provides effective memory immunity compared with that provided by LACK protein + rIL-12 protein.
Figure 2: Frequency of antigen-specific lymph node cells producing IFN-λ and IL-4 from vaccinated mice after infection.
Figure 3: ALM + IL-12 DNA provides effective memory immunity compared with that of ALM + rIL-12 protein.
Figure 4: Vaccination with LACK DNA and ALM + IL-12 DNA enhances the frequency of CD4+ cells producing IFN-λ after infection.

Similar content being viewed by others

References

  1. Reiner, S.L. & Locksley, R.M. The regulation of immunity to Leishmania major. Annu. Rev. Immuol. 13, 151–177 (1995).

    Article  CAS  Google Scholar 

  2. Heinzel, F.P., Schoenhaut, D.S., Rerko, R.M., Rosser, L.E. & Gately, M.K. Recombinant interleukin 12 cures mice infected with Leishmania major. J. Exp. Med. 177, 1505–1509 (1993).

    Article  CAS  Google Scholar 

  3. Sypek, J.P. et al. Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J. Exp. Med. 177, 1797–1802 (1993).

    Article  CAS  Google Scholar 

  4. Scharton-Kersten, T., Alfonso, L.C., Wysocka, M., Trinchieri, G. & Scott, P. IL-12 is required for NK cell activation and subsequent Th1 cell development in experimental leishmaniasis. J. Immunol. 154, 5320–5330 (1995).

    CAS  Google Scholar 

  5. Locksley, R.M., Reiner, S.L., Hatam, F., Littman, D.R. & Killeen, N. 1993. Helper T cells without CD4: control of leishmaniasis in CD4-deficient mice. Science 261, 1448–1451 (1993).

    Article  CAS  Google Scholar 

  6. Launois, P., Swihart, K.G., Milon, G. & Louis, J.A. Early production of IL-4 in susceptible mice infected with Leishmania major rapidly induces IL-12 unresponsiveness. J. Immunol. 158, 3317–3324 (1997).

    CAS  PubMed  Google Scholar 

  7. Julia, V., Rassoulzadegan, M. & Glaichenhaus, N. Resistance to Leishmania major induced by tolerance to a single antigen. Science 274, 421–423 (1996).

    Article  CAS  Google Scholar 

  8. Launois, P. et al. IL-4 rapidly produced by Vβ4Vα8 CD4+ T cells instructs Th2 development and susceptibility to Leishmania major in BALB/c mice. Immunity 6, 541– 549 (1997).

    Article  CAS  Google Scholar 

  9. Afonso, L.C. et al. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science 263, 235– 237 (1994).

    Article  CAS  Google Scholar 

  10. Mougneau, E. et al. Expression cloning of a protective Leishmania antigen. Science 268, 563–566 (1995).

    Article  CAS  Google Scholar 

  11. Gurunathan, S. et al. Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. J. Exp. Med. 186, 1137– 1147 (1997).

    Article  CAS  Google Scholar 

  12. Jankovic, D. et al. Adsorption to aluminum hydroxide promotes the activity of IL-12 as an adjuvant for antibody as well as type 1 antibody responses to HIV-1 gp120. J. Immunol. 159, 2409– 2417 (1997).

    CAS  PubMed  Google Scholar 

  13. Campbell, K. A. et al. CD40 ligand is required for protective cell-mediated immunity to Leishmania major. Immunity 14, 283–289 (1996).

    Article  Google Scholar 

  14. Ma, X. et al. The IL-12 p40 gene promoter is primed by IFN-λ in monocytic cells. J. Exp. Med. 183–174 (1996).

    Article  Google Scholar 

  15. Ridge, J.P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–477 ( 1998).

    Article  CAS  Google Scholar 

  16. Bennett, S.R.M. et al. Help for cytotoxic T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    Article  CAS  Google Scholar 

  17. Schoenberger, S.P., Toes, R.E.M., van der Voort, E.I.H., Offringa, R. & Melief, C.J.M. T-cell help for cytotoxic T cells is mediated by CD40-CD40L interactions. Nature 393, 480–483 (1998).

    Article  CAS  Google Scholar 

  18. Wolff, J. A., Ludtke, J.J., Acsadi, G., Williams, P. & Jani, A. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum. Mol. Genet. 1, 363–369 (1992).

    Article  CAS  Google Scholar 

  19. Klinman, D.M., Yi, A.K., Beaucage, S.L., Conover, J. & Krieg, A.M. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon λ. Proc. Natl. Acad. Sci. USA 93, 2879– 2883 (1996).

    Article  CAS  Google Scholar 

  20. Sato, Y. et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273, 352– 354 (1996).

    Article  CAS  Google Scholar 

  21. Zimmermann, S. et al. CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J. Immunol. 160; 3627–3630 (1998).

    CAS  Google Scholar 

  22. Seder, R.A., Kelsall, B.L. & Jankovics, D. Differential roles of IL-12 in maintenance of immune responses in infectious vs. autoimmune disease. J. Immunol. 157, 2745–2748 (1996).

    CAS  Google Scholar 

  23. Hu-Li, J., Huang, H., Ryan, J. & Paul, W.E. In differentiated CD4+ T cells, interleukin-4 production is cytokine-autonomous, whereas interferon λ production is cytokine dependent. Proc. Natl. Acad. Sci. USA 94, 3189– 3194 (1997).

    Article  CAS  Google Scholar 

  24. Murphy, E.E. et al. B7 and interleukin 12 cooperate for proliferation and interferon-λ production by mouse T helper clones that are unresponsive to B7 costimulation. J. Exp. Med. 180, 223– 231 (1994).

    Article  CAS  Google Scholar 

  25. Clerici, M. et al. Type 1/type 2 cytokine modulation to T-cell programed cell death as a model for human immunodeficiency virus pathogenesis. Proc. Natl. Acad. Sci. USA 91, 11811– 11815 (1994).

    Article  CAS  Google Scholar 

  26. Marth, T., Strober, W. & Kelsall, B.L. High dose oral tolerance in ovalbumin TCR-transgenic mice. Systemic neutralization of IL-12 augments TGF-β secretion and T cell apoptosis. J. Immunol. 157, 2348– 2357 (1996).

    CAS  PubMed  Google Scholar 

  27. Muller, I., Pedrazzini, T., Kropf, P., Louis, J. & Milon, G. Establishment of resistance to Leishmania major infection in susceptible BALB/c mice requires parasite-specific CD8+ T cells. Int. Immunol. 3, 587–597 (1991).

    Article  CAS  Google Scholar 

  28. Muller, I., Kropf, P., Etges, R.J. & Louis J.A. Gamma interferon response in secondary Leishmania major infection: role of CD8+ T cells. Infect. Immunol. 61, 3730–3738 (1993).

    CAS  Google Scholar 

  29. da Conceicao-Silva, F., Perlaza, B.L., Louis, J.A. & Romero, P. Leishmania major infection in mice primes for specific major histocompatibility complex class I-restricted CD8+ cytotoxic T cell responses. Eur. J. Immunol. 24, 2813– 2817 (1994).

    Article  CAS  Google Scholar 

  30. Stefani, M.M., Muller, I. & Louis, J.A. Leishmania major-specific CD8+ T cells are inducers and targets of nitric oxide produced by parasitized macrophages. Eur. J. Immunol. 24, 746– 752 (1994).

    Article  CAS  Google Scholar 

  31. Conceicao-Silva, F., Hahne, M., Schröter M., Louis J. & Tschopp, J. The resolution of lesions induced by Leishmania major in mice requires a functional Fas (APO-1, CD95) pathway of cytotoxicity. Eur. J. Immunol. 28, 237–245 (1998).

    Article  CAS  Google Scholar 

  32. Behr, M.A. & Small, P.M. Has BCG attenuated to impotence? Nature 389, 133–134 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Reiner and W. Paul for advice and B.R. Marshall for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Seder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurunathan, S., Prussin, C., Sacks, D. et al. Vaccine requirements for sustained cellular immunity to an intracellular parasitic infection. Nat Med 4, 1409–1415 (1998). https://doi.org/10.1038/4000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing