Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A serine elastase inhibitor reduces inflammation and fibrosis and preserves cardiac function after experimentally-induced murine myocarditis

Abstract

In viral myocarditis, inflammation and destruction of cardiac myocytes leads to fibrosis, causing progressive impairment in cardiac function. Here we show the etiologic importance of serine elastase activity in the pathophysiology of acute viral myocarditis and the therapeutic efficacy of an elastase inhibitor. In DBA/2 mice inoculated with the encephalomyocarditis virus, a more than 150% increase in myocardial serine elastase activity is observed. This is suppressed by a selective serine elastase inhibitor, ZD0892, which is biologically effective after oral administration. Mice treated with this compound had little evidence of microvascular constriction and obstruction associated with myocarditis-induced ischemia reperfusion injury, much less inflammation and necrosis, only mild fibrosis and myocardial collagen deposition, and normal ventricular function, compared with the infected nontreated group.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Coronary microvascular perfusion assessed on day 14 in experiment I.
Figure 2: a, Myocardial elastolytic activity in experimental groups at different time points.
Figure 3: a, 'Planimetered' area of diseased myocardium expressed as a percentage of total myocardial cross-sectional area.
Figure 4: ad, Photomicrographs (light microscopy) of hematoxylin and eosin-stained myocardial sections on day 14.
Figure 5: Myeloperoxidase (MPO) activity in EMC-infected hearts assessed on day 14.
Figure 6: Collagen concentration in the myocardium assessed by hydroxyproline assay on day 28.

Similar content being viewed by others

References

  1. Fallon, J.T. Myocarditis and dilated cardiomyopathy: Different stages of same disease? in Contemporary issues in Cardiovascular Pathology. Cardiovasc. Clin. Ser. 18, 155–162 (1987).

    Google Scholar 

  2. Lieberman, E.B., Hutchins, G.M., Herskowitz, A., Rose, N.R. & Baughman, K.L. Clinicopathologic description of myocarditis. J. Am. Coll. Cardiol. 18, 1617–1626 (1991).

    Article  CAS  Google Scholar 

  3. Liu, P., Wang, E.E.L. & Sole, M. Viral myocarditis: Changing concepts in pathogenesis and implications in diagnosis and treatment. Cardiovasc. Pathol. 2, 247–257 (1993).

    Article  Google Scholar 

  4. Tesh, R.B. The prevalence of encephalomyocarditis virus neutralizing antibodies among various human populations. Am. J. Trop. Med. Hyg. 27, 144–149 (1978).

    Article  CAS  Google Scholar 

  5. Neumann, D.A., Burik, K.L., Rose, N.R. & Herskowitz, A. Circulating heart-reactive antibodies in patients with myocarditis and cardiomyopathy. J. Am. Coll. Cardiol. 16, 839– 846 (1990).

    Article  CAS  Google Scholar 

  6. Matsumori, A. & Kawai, C. An animal model of congestive (dilated) cardiomyopathy: Dilatation and hypertrophy of the heart in the chronic stage in DBA/2 mice with myocarditis caused by encephalomyocarditis virus. Circulation 66, 355–360 (1982).

    Article  CAS  Google Scholar 

  7. Kishimoto, C. & Abelmann, W.H. In vivo significance of T cells in the development of Coxsackievirus B3 myocarditis in mice. Immature but antigen-specific T cells aggravate cardiac injury. Circ. Res. 67, 589–598 (1990).

    Article  CAS  Google Scholar 

  8. Hirasawa, K. et al. Depletion of Mac1-positive macrophages protects DBA/2 mice from encephalomyocarditis virus-induced myocarditis and diabetes. J. Gen. Virol. 77, 737–741 (1996).

    Article  CAS  Google Scholar 

  9. Lane, J.R., Neumann, D.A., Lafond-Walker, A., Herskowitz, A. & Rose, N.R. Interleukin 1 or tumor necrosis factor can promote coxsackie B3-induced myocarditis in resistant B10.A mice. J. Exp. Med. 175, 1123–1129 (1992).

    Article  CAS  Google Scholar 

  10. Yamada, T., Matsumori, A. & Sasayama, S. Therapeutic effect of anti-tumor necrosis factor-× antibody on the murine model of viral myocarditis induced by encephalomyocarditis virus. Circulation 89, 846– 851 (1994).

    Article  CAS  Google Scholar 

  11. Takada, H., Kishimoto, C. & Hiraoka, Y. Therapy with immunoglobulin suppresses myocarditis in a murine coxsackievirus B3 model. Antiviral and anti-inflammatory effects. Circulation 92, 1604–1611 (1995).

    Article  CAS  Google Scholar 

  12. Constanzo-Nordin, M.R., Reap, E.A., O'Connel, J.B., Robinson, J.A. & Scanlon, P.J. A nonsteroidal anti-inflammatory drug exacerbates coxsackievirus B3 murine myocarditis. J. Am. Coll. Cardiol. 6, 1078–1082 (1985).

    Article  Google Scholar 

  13. Kishimoto, C. & Abelmann, W.H. Absence of effects of cyclosporine on myocardial lymphocyte subsets in coxsackievirus B3 myocarditis in the aviremic stage. Circ. Res. 65, 934– 945 (1989).

    Article  CAS  Google Scholar 

  14. Kishimoto, C., Thorp, K.A. & Abelmann, W.H. Immunosuppression with high doses of cyclophosphamide reduces the severity of myocarditis but increases mortality in murine coxsackievirus B3 myocarditis. Circulation 82, 982– 989 (1990).

    Article  CAS  Google Scholar 

  15. Silver, M.A. & Kowalczyk, D. Coronary microvascular narrowing in acute murine coxsackie B3 myocarditis. Am. Heart J. 118, 173–174 (1989).

    Article  CAS  Google Scholar 

  16. Factor, S.M., Minase, T., Cho, S., Dominitz, R. & Sonnenblick, E.H. Microvascular spasm in the cardiomyopathic Syrian hamster: A preventable cause of focal myocardial necrosis. Circulation 66, 342–354 (1982).

    Article  CAS  Google Scholar 

  17. Dong, R., Liu, P., Wee, L., Butany, J. & Sole, M.J. Verapamil ameliorates the clinical and pathological course of murine myocarditis. J. Clin. Invest. 90, 2022–2030 (1992).

    Article  CAS  Google Scholar 

  18. Yamada, T., Matsumori, A., Okada, I., Tominaga, M. & Kawai, C. The effect of alpha 1-blocker, bunazosin on a murine model of congestive heart failure induced by viral myocarditis. Jap. Circ. J. 56, 1138–1145 (1992).

    Article  CAS  Google Scholar 

  19. Tominaga, M., Matsumori, A., Okada, I., Yamada, T. & Kawai, C. Beta-blocker treatment of dilated cardiomyopathy. Beneficial effect of carteolol in mice. Circulation 83, 2021–2028 (1991).

    Article  CAS  Google Scholar 

  20. Rezkalla, S., Kloner, R.A., Khatib, G. & Khatib, R. Beneficial effects of captopril in acute coxsackievirus B3 murine myocarditis. Circulation 81, 1039–1046 (1990).

    Article  CAS  Google Scholar 

  21. Harlan, J.M., Killen, P.D., Harker, L.A. & Striker, G.E. Neutrophil-mediated endothelial injury in vitro. J. Clin. Invest. 68, 1394–1403 (1981).

    Article  CAS  Google Scholar 

  22. Huber, A.R. & Weiss, S.J. Disruption of the subendothelial basement membrane during neutrophil diapedesis in an in vitro construct of a blood vessel wall. J. Clin. Invest. 83, 1122–1136 (1989).

    Article  CAS  Google Scholar 

  23. Zimmerman, B.J. & Granger, D.N. Reperfusion-induced leukocyte infiltration: Role of elastase. Am. J. Physiol. 259, H390–H394 (1990).

    CAS  PubMed  Google Scholar 

  24. Dinerman, J.L. et al. Increased neutrophil elastase release in unstable angina pectoris and acute myocardial infarction. J. Am. Coll. Cardiol. 15, 1559–1563 (1990).

    Article  CAS  Google Scholar 

  25. Nicolini, F.A. et al. Leukocyte elastase inhibition and t-PA-induced coronary artery thrombolysis in dogs: Beneficial effects on myocardial histology. Am. Heart J. 122, 1245–1251 (1991).

    Article  CAS  Google Scholar 

  26. Tiefenbacher, C.P., Niroomand, M.E.F., Tillmanns, S.B.H. & Kübler, R.Z.W. Inhibition of elastase improves myocardial function after repetitive ischemia and myocardial infarction in the rat heart. Eur. J. Physiol. 433, 563–570 (1997).

    Article  CAS  Google Scholar 

  27. Cowan, B. et al. Elafin, a serine elastase inhibitor, attenuates post-cardiac transplant coronary arteriopathy and reduces myocardial necrosis in rabbits after heterotopic cardiac transplantation. J. Clin. Invest. 97, 2452–2468 (1996).

    Article  CAS  Google Scholar 

  28. Oho, S. & Rabinovitch, M. Post-cardiac transplant arteriopathy in piglets is associated with fragmentation of elastin and increased activity of a serine elastase. Am. J. Pathol. 145, 202–210 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Crinnion, J.N., Homer-Vanniasinkam, S., Hatton, R., Parkin, S.M. & Gough, M.J. Role of neutrophil depletion and elastase inhibition in modifying skeletal muscle reperfusion injury. Cardiovasc. Surg. 2, 749–753 (1994).

    CAS  PubMed  Google Scholar 

  30. Edwards, P.D. et al. Discovery and biological activity of orally active peptidyl trifluoromethyl ketone inhibitors of human neutrophil elastase. J. Med. Chem. 40, 1876–1885 (1997).

    Article  CAS  Google Scholar 

  31. Veale, C.A. et al. Orally active trifluoromethyl ketone inhibitors of human leukocyte elastase. J. Med. Chem. 40, 3173– 3181 (1997).

    Article  CAS  Google Scholar 

  32. Molla, A., Hellen, C.U.T. & Wimmer, E. Inhibition of proteolytic activity of poliovirus and rhinovirus 2A proteinases by elastase-specific inhibitors. J. Virol. 67, 4688–4695 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Seko, Y., Shinkai, Y. & Kawasaki, A. Expression of perforin in infiltrating cells in murine myocarditis caused by coxsackievirus B3. Circulation 84, 788–795 (1991).

    Article  CAS  Google Scholar 

  34. Caforio A.L.P. et al. Novel organ-specific circulating cardiac autoantibodies in dilated cardiomyopathy. J. Am. Coll. Cardiol. 15, 1527–1534(1990).

    Article  CAS  Google Scholar 

  35. Campbell, E.J., Silverman, E.K. & Campell, M.A. Elastase and cathepsin G of human monocytes. Quantification of cellular content, release in response to stimuli, and heterogeneity in elastase-mediated proteolytic activity. J. Immunol. 143, 2961–2968 (1989).

    CAS  PubMed  Google Scholar 

  36. Senior, R.M. et al. Elastase of U-937 monocyte-like cells. Comparisons with elastases derived from human monocytes and neutrophils and murine macrophage-like cells. J. Clin. Invest. 69, 384– 393 (1982).

    Article  CAS  Google Scholar 

  37. Tschopp, J. & Jogeneel, C.V. Cytotoxic T lymphocyte mediated cytolysis. Biochemistry 27, 2641– 2646 (1988).

    Article  CAS  Google Scholar 

  38. Thompson, K. & Rabinovitch, M. Exogenous leukocyte and endogenous elastases can mediate mitogenic activity in pulmonary artery smooth muscle cells by release of extracellular matrix-bound basic fibroblast growth factor. J. Cell. Physiol. 166, 495– 505 (1996).

    Article  CAS  Google Scholar 

  39. Romanic, A.M. & Madri, J.A. The induction of 72-kD gelatinase in T cells upon adhesion to endothelial cells is VCAM-1 dependent. J. Cell Biol. 125, 1165–1178 (1994).

    Article  CAS  Google Scholar 

  40. Hauck, M. et al. Effects of synthesized elastin peptides on human leukocytes. Biochem. Mol. Biol. Int. 37, 45– 55 (1995).

    CAS  PubMed  Google Scholar 

  41. Myers, M.L., Bolli, R., Lekick, R.F., Hartley, C.J. & Roberts, R. Enhancement of recovery of myocardial function by oxygen free-radical scavengers after reversible regional ischemia. Circulation 72, 915–921 (1985).

    Article  CAS  Google Scholar 

  42. Frizelle, S., Schwarz, J., Huber, S.A. & Leslie, K. Evaluation of the effects of low molecular weight heparin on inflammation and collagen deposition in chronic coxsackievirus B3-induced myocarditis in A/J mice. Am. J. Pathol. 141, 203–209 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bradley, P.P., Priebat, D.A., Christensen, R.D., & Rothstein, G. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. J. Invest. Dermatol. 78, 206–209 (1982).

    Article  CAS  Google Scholar 

  44. Keeley, F.W., Morin, J.D. & Vessely, S. Characterization of collagen from normal human sclera. Exp. Eye Res. 39, 533– 542 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Jowlabar and S. Taylor for secretarial assistance and C. Coulber, S. Ciura, E. Sitarz and K. Aitken for technical assistance. We also thank the staff of the Animal Care Facility at The Toronto Hospital General Division for their support with animal care, and members of the Department of Pathology at The Hospital for Sick Children for preparing the specimens for microscopy. This work was supported by a grants #74026 and T-2373 from the Heart and Stroke Foundation of Ontario and from the Medical Research Council of Canada.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Zaidi, S., Liu, P. et al. A serine elastase inhibitor reduces inflammation and fibrosis and preserves cardiac function after experimentally-induced murine myocarditis. Nat Med 4, 1383–1391 (1998). https://doi.org/10.1038/3973

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3973

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing