Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of cell proliferation by an RNA ligand that selectively blocks E2F function

Abstract

The control of cell proliferation is of central importance to the proper development of a multicellular organism, the homeostatic maintenance of tissues, and the ability of certain cell types to respond appropriately to environmental cues. Disruption of normal cell growth control underlies many pathological conditions, including endothelial proliferative disorders in cardiovascular disease as well as the development of malignant tumors. Particularly critical for the control of cell growth is the pathway involving the G1 cyclin–dependent kinases that regulate the Rb family of proteins, which in turn control E2F transcription factor activity1–7. Because E2F is critical for regulation of cell proliferation, we sought to identify and to develop specific inhibitors of E2F function that might also be useful in the control of cellular proliferation. Moreover, because the control of E2F activity appears to be the end result of G1 regulatory cascades, the ability to inhibit E2F may be particularly effective in impeding a wide variety of proliferative events. We have used in vitro selection to isolate several unique RNA species from high complexity RNA libraries that avidly bind to the E2F family of proteins. These RNAs also inhibit the DNA binding capacity of the E2F proteins. We also show that an E2F RNA ligand can block the induction of S phase in quiescent cells stimulated by serum addition. As such, these data demonstrate the critical role for E2F activity in cell proliferation and suggest that such RNA molecules may be effective as therapeutic entities to control cellular proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sherr, C.J. Mammalian G1 cyclins. Cell 73, 1059–1065 (1993).

    Article  CAS  Google Scholar 

  2. Hunter, T. Braking the cycle. Cell 75, 839–841 (1993).

    Article  CAS  Google Scholar 

  3. Nevins, J.R. E2F: A link between the Rb tumor suppressor protein and viral onco-proteins. Science 258, 424–429 (1992).

    Article  CAS  Google Scholar 

  4. Helin, K. & Harlow, E. The retinoblastoma protein as a transcriptional repressor. Trends Cell Biol. 3, 43–46 (1993).

    Article  CAS  Google Scholar 

  5. La Thangue, N.B. DRTF1/E2F: An expanding family of heterodimeric transcription factors implicated in cell-cycle control. Trends Biochem. Sci. 19, 108–114 (1994).

    Article  CAS  Google Scholar 

  6. Sherr, C.J. & Roberts, J.M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149–1163 (1995).

    Article  CAS  Google Scholar 

  7. Weinberg, R.A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  Google Scholar 

  8. Gold, L., Polisky, B., Uhlenbeck, O. & Yarus, M. Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64, 763–797 (1995).

    Article  CAS  Google Scholar 

  9. Szostak, J.W. In vitro genetics. Trends Biochem. Sci. 17, 89–93 (1992).

    Article  CAS  Google Scholar 

  10. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  Google Scholar 

  11. Tuerk, C. & MacDougal-Waugh, S. In vitro evolution of functional nucleic acids: High-affinity RNA ligands of HIV-1 proteins. Gene 137, 33–39 (1993).

    Article  CAS  Google Scholar 

  12. Cress, W.D., Johnson, D.G. & Nevins, J.R. A genetic analysis of the E2F1 gene distinguishes regulation by Rb, p107, and adenovirus E4. Mol. Cell. Biol. 13, 6314–6325 (1993).

    Article  CAS  Google Scholar 

  13. Zuker, M. On finding all suboptimal foldings of an RNA molecule. Science 244, 48–52 (1989).

    Article  CAS  Google Scholar 

  14. Jaeger, J.A., Turner, D.H. & Zuker, M. Improved predictions of secondary structures for RNA. Proc. Natl. Acad. Sci. USA 86, 7706–7710 (1989).

    Article  CAS  Google Scholar 

  15. Jaeger, J.A., Turner, D.H. & Zuker, M. Predicting optimal and suboptimal secondary structure for RNA. Methods Enzymol. 183, 281–306 (1989).

    Article  Google Scholar 

  16. Duronio, R.J., O´Farrell, P.H., Xie, J.-E., Brook, A. & Dyson, N. The transcription factor E2F is required for S phase during Drosophila embryogenesis. Genes Dev. 9, 1445–1455 (1995).

    Article  CAS  Google Scholar 

  17. Dobrowolski, S.F., Stacey, D.W., Harter, M.L., Stine, J.T. & Hiebert, S.W. An E2F dominant negative mutant blocks E1A induced cell cycle progression. Oncogene 9, 2605–2612 (1994).

    CAS  PubMed  Google Scholar 

  18. Wu, C.-L., Classon, M., Dyson, N. & Harlow, E. Expression of dominant-negative mutant DP-1 blocks cell cycle progression in G1 . Mol. Cell. Biol. 16, 3698–3706 (1996).

    Article  CAS  Google Scholar 

  19. Asano, M., Nevins, J.R. & Wharton, R.P. Ectopic E2F expression induces S phase and apoptosis in Drosophila imaginal discs. Genes Dev. 10, 1422–1432 (1996).

    Article  CAS  Google Scholar 

  20. DeGregori, J., Leone, G., Ohtani, K., Miron, A. & Nevins, J.R. E2F1 accumulation bypasses a G1 arrest resulting from the inhibition of G1 cyclin-dependent kinase activity. Genes Dev. 9, 2873–2887 (1995).

    Article  CAS  Google Scholar 

  21. Johnson, D.G., Schwarz, J.K., Cress, W.D. & Nevins, J.R. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365, 349–352 (1993).

    Article  CAS  Google Scholar 

  22. Qin, X.-Q., Livingston, D.M., Kaelin, W.G. & Adams, P.D. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl. Acad. Sci. USA 91, 10918–10922 (1994).

    Article  CAS  Google Scholar 

  23. Yamasaki, L. et al Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85, 537–548 (1996).

    Article  CAS  Google Scholar 

  24. Field, S.J. et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85, 549–561 (1996).

    Article  CAS  Google Scholar 

  25. Doudna, J.A., Cech, T.R. & Sullenger, B. Selection of an RNA molecule that mimics a major autoantigenic epitope of human insulin receptor. Proc. Natl. Acad. Sci. USA 92, 2355–2359 (1995).

    Article  CAS  Google Scholar 

  26. Ikeda, M.-A., Jakoi, L. & Nevins, J.R. A unique role for the Rb protein in controlling E2F accumulation during cell growth and differentiation. Proc. Natl. Acad. Sci. USA 93, 3215–3220 (1996).

    Article  CAS  Google Scholar 

  27. Li, J.-M., Nichols, M.A., Chandrasekharan, S., Xiong, Y. & Wang, X.-F. Transforming growth factor activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J. Biol. Chem. 270, 26750–26753 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishizaki, J., Nevins, J. & Sullenger, B. Inhibition of cell proliferation by an RNA ligand that selectively blocks E2F function. Nat Med 2, 1386–1389 (1996). https://doi.org/10.1038/nm1296-1386

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1296-1386

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing