Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In vivo fate of HIV-1-infected T cells: Quantitative analysis of the transition to stable latency


Although it is presumed that the integration of HIV-1 into the genome of infected CD4+ T lymphocytes allows viral persistence, there has been little direct evidence that CD4+ T cells with integrated provirus function as a latent reservoir for HIV-1 in infected individuals. Using resting CD4+ T-cell populations of extremely high purity and a novel assay that selectively and unambiguously detects integrated HIV-1, we show that resting CD4+ T cells harbouring integrated provirus are present in some infected individuals. However, these cells do not accumulate within the circulating pool of resting CD4+ T cells in the early stages of HIV-1 infection and do not accumulate even after prolonged periods in long-term survivors of HIV-1 infection. These results suggest that because of viral cytopathic effects and/or host effector mechanisms, productively infected CD4+ T cells do not generally survive for long enough to revert to a resting memory state in vivo.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Yasutomi, Y., Reimann, K.A., Lord, C.I., Miller, M.D. & Letvin, N.L. Simian immunodeficiency virus-specific CD8+ lymphocyte response in acutely infected rhesus monkeys. J. Virol. 67, 1707–1711 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Koup, R.A. et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68, 4650–4655 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Borrow, P., Lewicki, H., Hahn, B.H., Shaw, G.M. & Oldstone, M.B. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol. 68, 6103–6110 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Pantaleo, G. et al. Major expansion of CD8+ T cs with a predominant Vβ usage during the primary immune response to HIV. Nature 370, 463–467 (1994).

    CAS  Article  Google Scholar 

  5. 5

    Harper, M.E., Marselle, L.M., Gallo, R.C. & Wong-Staal, F. Detection of lymphocytes expressing human T-lymphotropic virus type III in lymph nodes and peripheral blood from infected individuals by in situ hybridization. Proc. natn. Acad. Sci. U.S.A. 83, 772–776 (1986).

    CAS  Article  Google Scholar 

  6. 6

    Ho, D.D., Moudgil, T. & Alam, M. Quantitation of human immunodeficiency virus type 1 in the blood of infected persons. New Engl. J. Med. 321, 1621–1625 (1989).

    CAS  Article  Google Scholar 

  7. 7

    Schnittman, S.M. et al. The reservoir for HIV-1 in human peripheral blood is a T cell that maintains expression of CD4. Science 245, 305–308 (1989).

    CAS  Article  Google Scholar 

  8. 8

    Psallidopoulus, M.C. et al. Intergrated proviral human immunodeficiency virus type 1 is present in CD4+ peripheral blood lymphocytes in healthy seropositive individuals. J. Virol. 63, 4626–4631 (1989).

    Google Scholar 

  9. 9

    Simmonds, P. et al. Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. J. Virol 64, 864–872 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Garcia-Blanco, M.A. & Cullen, B.R. Molecular basis of latency in pathogenic human viruses. Science 254, 815–820 (1991).

    CAS  Article  Google Scholar 

  11. 11

    Folks, T. et al. Susceptibility of normal human lymphocytes to infection with HTLV-III/LAV. J. Immun. 136, 4049–4053 (1986).

    CAS  PubMed  Google Scholar 

  12. 12

    Zack, J.A., Cann, A.J., Lugo, J.P. & Chen, I.S. HIV-1 production from infected peripheral blood T cells after HTLV-I induced mitogenic stimulation. Science 240, 1026–1029 (1988).

    CAS  Article  Google Scholar 

  13. 13

    Zack, J.A. et al. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61, 213–222 (1990).

    CAS  Article  Google Scholar 

  14. 14

    Bukrinsky, M.I., Stanwick, T.L., Dempsey, M.P. & Stevenson, M. Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 254, 423–427 (1991).

    CAS  Article  Google Scholar 

  15. 15

    Bukrinsky, M.I. et al. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc. natn. Acad. Sci. U.S.A. 89, 6580–6584 (1992).

    CAS  Article  Google Scholar 

  16. 16

    Folks, T.M. et al. Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc. natn. Acad. Sci. U.S.A. 86, 2365–2368 (1989).

    CAS  Article  Google Scholar 

  17. 17

    Tong-Starksen, S.E., Luciw, P.A. & Peterlin, B.M. Human immunodeficiency virus long terminal repeat responds to T-cell activation signals. Proc. natn. Acad. Sci. U.S.A. 84, 6845–6849 (1987).

    CAS  Article  Google Scholar 

  18. 18

    Nabel, G. & Baltimore, D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326, 711–713 (1987).

    CAS  Article  Google Scholar 

  19. 19

    Siekevitz, M. et al. Activation of the HIV-1 LTR by T cell mitogens and the trans-activator protein of HTLV-I. Science 238, 1575–1578 (1987).

    CAS  Article  Google Scholar 

  20. 20

    Bello, L.J. Regulation of thymidine kinase synthesis in human cells. Exp. Cell Res. 89, 263–274 (1974).

    CAS  Article  Google Scholar 

  21. 21

    Withers-Ward, E.S., Kitamura, Y., Barnes, J.P. & Coffin, J.M. Distribution of targets for avian retrovirus DNA integration in vivo. Genes Dev. 8, 1473–1487 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Folks, T.M., Justement, J., Kinter, A., Dinarello, C.A. & Fauci, A.S. Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science 238, 800–802 (1987).

    CAS  Article  Google Scholar 

  23. 23

    Embretson, J. et al. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362, 359–362 (1993).

    CAS  Article  Google Scholar 

  24. 24

    Schwartz, D. et al. Absence of recoverable infectious virus and unique immune responses in an asymptomatic HIV+ long-term survivor. AIDS Res. Hum. Retrovir. 10, 1703–1711 (1994).

    CAS  Article  Google Scholar 

  25. 25

    Coombs, R.W. et al. Plasma viremia in human immunodeficiency virus infection. New Engl. J. Med. 321, 1626–1631 (1989).

    CAS  Article  Google Scholar 

  26. 26

    Bagasra, O., Hauptman, S.P., Lischner, H.W., Sachs, M. & Pomerantz, R.J. Detection of human immunodeficiency virus type 1 provirus in mononuclear cells by in situ polymerase chain reaction. New Engl. J. Med. 326, 1385–1391 (1992).

    CAS  Article  Google Scholar 

  27. 27

    Patterson, B.K. et al. Detection of HIV-1 DNA and messenger RNA in individual cells by PCR-driven in situ hybridization and flow cytometry. Science 260, 976–979 (1993).

    CAS  Article  Google Scholar 

  28. 28

    Saksela, K., Muchmore, E., Girard, M., Fultz, P. & Baltimore, D. High viral load in lymph nodes and latent human immunodeficiency virus (HIV) in peripheral blood cells of HIV-1-infected chimpanzees. J. Virol. 67, 7423–7427 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Pantaleo, G. et al. Lymphoid organs function as major reservoirs for human immunodeficiency virus. Proc. natn. Acad. Sci. U.S.A. 88, 9838–9842 (1991).

    CAS  Article  Google Scholar 

  30. 30

    Pantaleo, G. et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362, 355–358 (1993).

    CAS  Article  Google Scholar 

  31. 31

    Pang, S. et al. High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature 343, 85–89 (1990).

    CAS  Article  Google Scholar 

  32. 32

    Michael, N.L., Vahey, M., Burke, D.S. & Redfield, R.R. Viral DNA and mRNA expression correlate with the stage of human immunodeficiency virus (HIV) type 1 infection in humans: Evidence for viral replication in all stages of HIV disease. J. Virol. 66, 310–316 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Seshamma, T., Bagasra, O., Trono, D., Baltimore, D. & Pomerantz, R.J. Blocked early-stage latency in the peripheral blood cells of certain individuals infected with human immunodeficiency virus type 1. Proc. natn. Acad. Sci. U.S.A. 89, 10663–10667 (1992).

    CAS  Article  Google Scholar 

  34. 34

    Adams, M. et al. Cellular latency in human immunodeficiency virus-infected individuals with high CD4 levels can be detected by the presence of promoter-proximal transcripts. Proc. natn. Acad. Sci. U.S.A. 91, 3862–3866 (1994).

    CAS  Article  Google Scholar 

  35. 35

    Piatak, M. et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259, 1749–1754 (1993).

    CAS  Article  Google Scholar 

  36. 36

    Ho, D.D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    CAS  Article  Google Scholar 

  37. 37

    Wei, X. et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995).

    CAS  Article  Google Scholar 

  38. 38

    Mackay, C.R. Migration pathways and immunologic memory among T lymphocytes. Semin. Immun. 4, 51–58 (1992).

    CAS  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chun, TW., Finzi, D., Margolick, J. et al. In vivo fate of HIV-1-infected T cells: Quantitative analysis of the transition to stable latency. Nat Med 1, 1284–1290 (1995).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing