Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enzymatic remodelling of the carbohydrate surface of a xenogenic cell substantially reduces human antibody binding and complement-mediated cytolysis

Abstract

The major obstacle to successful discordant xenotransplantation is the phenomenon of hyperacute rejection (HAR). In the pig-to-primate discordant transplant setting, HAR results from the deposition of high-titre anti-α-galactosyl antibodies and complement activation leading to endothelial cell destruction and rapid graft failure. To overcome HAR, we developed an enzymatic carbohydrate remodelling strategy designed to replace expression of the Galα-1,3-Gal xenoepitope on the surface of porcine cells with the non-antigenic universal donor human blood group O antigen, the α-1,2-fucosyl lactosamine moiety (H-epitope). Xenogenic cells expressing the human α-1,2-fucosyltransferase expressed high levels of the H-epitope and significantly reduced Galα-1,3-Cal expression. As a result, these cells were shown to be resistant to human natural antibody binding and complement-mediated cytolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Auchincloss, H. Xenogeneic transplantation: A review. Transplantation 46, 1–20 (1988).

    Article  Google Scholar 

  2. Auchincloss, H. Xenografting: A review. Transplant. Rev. 4, 14–27 (1990).

    Article  Google Scholar 

  3. Platt, J.L. et al. Transplantation of discordant xenografts: A review of progress. Immun. Today 11, 450–456 (1990).

    Article  CAS  Google Scholar 

  4. Platt, J.L. & Bach, F.H. Discordant xenografting: challenges and controversies. Curr. Opin. Immun. 3, 735–739 (1991).

    Article  CAS  Google Scholar 

  5. Bogman, M.J.J.T., Berden, J.H.M., Hagemann, F.H.M., Maass, C.N. & Keone, R.A.P. Patterns of vascular damage in the antibody-mediated rejection of skin xenografts in the mouse. Am. J. Path. 100, 727–738 (1980).

    CAS  PubMed  Google Scholar 

  6. Bogman, M.J.J.T., Berden, J.H.M., Cornelissen, I.M.H.A., Maass, C.N. & Keone, R.A.P. The role of complement in the induction of acute antibody-mediated vasculitis of rat skin grafts in the mouse. Am. J. Path. 109, 97–106 (1982).

    CAS  PubMed  Google Scholar 

  7. Dalmasso, A.P. et al. Mechanism of complement activation in the hyperacute rejection of porcine organs in primate recipients. Am. J. Path. 140, 1157–1166 (1992).

    CAS  PubMed  Google Scholar 

  8. Leventhal, J.R. et al. Complement depletion prolongs discordant cardiac xenograft survival in rodents and non-human primates. Transplantn Proc. 25, 398–399 (1993).

    CAS  Google Scholar 

  9. Pruitt, S. et al. The effect of soluble complement receptor type 1 on hyperacute rejection of porcine xenografts. Transplantation 57, 363–370 (1994).

    Article  CAS  Google Scholar 

  10. Leventhal, J.R. et al. Removal of baboon and human antiporcine IgG and IgM natural antibodies by immunoabsorption. Transplantation 59, 294–300 (1995).

    Article  CAS  Google Scholar 

  11. Brewer, R.J. et al. Depletion of preformed natural antibody in primates for discordant xenotransplantation by continuous donor organ plasma perfusion. Transplantn Proc. 25, 385–386 (1993).

    CAS  Google Scholar 

  12. McCurry, K.R. et al. Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nature Med. 1, 423–427 (1995).

    Article  CAS  Google Scholar 

  13. Fodor, W.L. et al. Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection. Proc. natn. Acad. Set. U.S.A. 91, 11153–11157 (1994).

    Article  CAS  Google Scholar 

  14. Rosengard, A.M. et al. Tissue expression of the human complement inhibitor, decay accelerating factor, in transgenic pigs. Transplantation 59, 1325–1333 (1995).

    Article  CAS  Google Scholar 

  15. Sandrin, M.S., Vaughan, H.A., Dabkowski, P.L. & McKenzie, I.F.C. IgM antibodies in human serum reacts predominantly with Gal (al, 3)Gal epitopes. Proc. natn. Acad. Sci. U.S.A. 90, 11391–11395 (1993).

    Article  CAS  Google Scholar 

  16. Sandrin, M.S., Vaughan, H.A. & McKenzie, I.F.C. Identification of Gal (αl,3)Gal as the major epitope for pig-to-human vascularised xenografts. Transplantn Rev. 8, 134–149 (1994).

    Article  Google Scholar 

  17. Sandrin, M.S. & McKenzie, I.F.C. Gal (αl, 3)Gal, the major xenoantigen (s) recognised in pigs by human natural antibodies. Immunol. Rev. 141, 169–190 (1994).

    Article  CAS  Google Scholar 

  18. Cooper, D.K.C. et al. Identification of a-galactosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: Relevance to discordant xenografting in man. Transplantn Immun. 1, 198–205 (1993).

    Article  CAS  Google Scholar 

  19. Cooper, D.K.C., Koren, E. & Oriol, R. Oligosaccharides and discordant xenotransplantation. Immunol. Rev. 141, 31–58 (1994).

    Article  CAS  Google Scholar 

  20. Good, A.H. et al. Identification of carbohydrate structures that bind antiporcine antibodies: Implications for discordant xenografting in humans. Tranplantn Proc. 24, 559–562 (1992).

    CAS  Google Scholar 

  21. Galili, U., Clark, M.R., Shohet, S.B., Buehler, J. & Macher, B.A. Evolutionary relationship between the natural anti-Gal antibody and the Galal-3Gal epitope in primates. Proc. natn. Acad. Sci. U.S.A. 84, 1369–1373 (1987).

    Article  CAS  Google Scholar 

  22. Galili, U., Shohet, S.B., Korbin, E., Stults, C.L.M. & Macher, B.A. Man, apes and Old World monkeys differ from other mammals in the expression of the a-galactosyl epitopes on nucleated cells. J. biol. Chem. 263, 17755–17762 (1988).

    CAS  PubMed  Google Scholar 

  23. Larsen, R.D. et al. Isolation of a cDNA encoding a murine UDPgalactose:β-D-galctosyl-1, 4-N-acetyl-glucosaminide-l,3-galactosyltransferase: Expression cloning by gene transfer. Proc. natn. Acad. Sci. U.S.A. 86, 8227–8231 (1989).

    Article  CAS  Google Scholar 

  24. Joziasse, D.H., Shaper, N.L., Kim, D., Van den Eijnden, D.H. & Shaper, J.H. Murine α1,3 galactosyltransferase a single gene locus specifies four isoforms of the enzyme by alternative splicing. J. biol. Chem. 267, 5534–5541 (1992).

    CAS  PubMed  Google Scholar 

  25. Joziasse, D.H., Shaper, J.H., Van den Eijnden, D.H., Van Tunen, A.J. & Shaper, N.L. Bovine α1,3 galactosyltiansferase: Isolation and characterization of a cDNA clone. Identification of homologous sequences in human genomic DNA. J. biol. Chem. 264, 14290–14297 (1989).

    CAS  PubMed  Google Scholar 

  26. Sandrin, M.S., Dabkowski, P.L., Henning, M.M., Mouhtouris, E. & McKenzie, I.F.C. Characterization of cDNA clones for porcine α1,3 galactosyltransferase: The enzyme generating the Gal (α1,3)Gal epitope. Xenotransplantation 1, 81–88 (1994).

    Article  Google Scholar 

  27. Joziasse, D.H., Shaper, J.H., Jabs, E.W. & Sharper, N.L. Characterization of an al, 3-galactosyltransferase homologue on human chromosome 12 that is organized as a processed pseudogene. J. biol. Chem. 266, 6991–6998 (1991).

    CAS  PubMed  Google Scholar 

  28. Larsen, R.D., Riverra-Marrero, C.A., Ernst, L.K., Cummings, R.D. & Lowe, J.B. Frameshift and non sense mutations in a human genomic sequence homologous to a murine UDP-Gal:β-D-Gal 1,4-D-GlcNAcα1,3-galactosyl-transferase cDNA. J. biol. Chem. 265, 7055–7061 (1990).

    CAS  PubMed  Google Scholar 

  29. Larsen, R.D., Ernst, L.K., Nair, R.P. & Lowe, J.B. Molecular cloning, sequence, and expression of a human GDP-L-fucose: β-D-galactoside 2-L-fucosyltransferase cDNA that can form the H blood group antigen. Proc. natn. Acad. Sci. U.S.A. 87, 6674–6678 (1990).

    Article  CAS  Google Scholar 

  30. Fischel, R.J. et al. Plasma exchange, organ perfusion, and immunosuppression reduce “natural” antibody levels as measured by binding to xenogeneic endothelial cells and prolong discordant xenograft survival. Transplantn Proc. 24, 574–575 (1992).

    CAS  Google Scholar 

  31. Cooper, D.K.C. et al. Specific intravenous carbohydrate therapy: A new approach to the inhibition of antibody-mediated rejection following AB-incompatible allografting and discordant xenografting. Transplantn Proc. 25, 377–378 (1993).

    CAS  Google Scholar 

  32. Oriol, R., Ye, Y., Koren, E. & Cooper, D.K.C. Carbohydrate antigens of pig tissues reacting with human natural antibodies as potential targets for hyperacute vascular rejection in pig-to-man organ xenotransplantation. Transplantation 56, 1433–1442 (1993).

    Article  CAS  Google Scholar 

  33. Kornfeld, R. & Kornfeld, S. Assembly of asparagine-linked Oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985).

    Article  CAS  Google Scholar 

  34. Schachter, H. Enzymes associated with glycosylation. Curr. Opin. struct. Biol. 1, 755–765 (1991).

    Article  CAS  Google Scholar 

  35. Shaper, J.H. & Shaper, N.L. Enzymes associated with glycosylation. Curr. Opin. Struct. Biol. 2, 701–709 (1992).

    Article  CAS  Google Scholar 

  36. Ausubel, F.M. et al. Current Protocols in Molecular Biology (Wiley-Interscience, New York, 1994).

    Google Scholar 

  37. Vaughan, H.A., Henning, M.M., Purcell, D.F.J., McKenzie, I.F.C. & Sandrin, M.S. Isolation of cDNA clones for CD48. Immunogenetics 33, 113–117 (1991).

    Article  CAS  Google Scholar 

  38. Hayes, C.E. & Goldstein, I.J. An α-D-galactosyl-binding lectin from Bandeiraea simplicifolia seeds. J. biol. Chem. 249, 1904–1914 (1974).

    CAS  PubMed  Google Scholar 

  39. Matsumoto, I. & Osawa, T. 1969. Purification and characterization of an anti-H (O) phytohemagglutinin of Ulex europeus. Biochim. biophys. Acta 194, 180–189 (1969).

    Article  CAS  Google Scholar 

  40. Sandrin, M.S., Vaughan, H.A., McKenzie, I.F.C., Tait, B.D. & Parish, C.R. The human la system: Definition and characterization by xenogeneic antisera. Immunogenetics 8, 185–200 (1979).

    Article  Google Scholar 

  41. Rajan, V.R., Larsen, R.D., Ajmera, S., Ernst, L.K. & Lowe, J.B. A cloned human DNA restriction fragment determines expression of a GDP-L, -fucose:β-D-galactoside 2 α-L-fucosyltransferase in transfected cells: Evidence for isolation and transfer of the human H blood group locus. J. biol. Chem. 264, 11158–11167 (1989).

    CAS  PubMed  Google Scholar 

  42. Van der Eijnden, D.H., Blanken, W.M., Winterwerp, H. & Schiphorst, W.E.C.M. Identification and characterization of an UDP-Gal: N-acetyllactosaminide α-1, 3-D-galactosyltransferase in calf thymus. Eur. J. Biochem. 134, 523–530 (1983).

    Article  Google Scholar 

  43. Brew, K., Vanaman, T.C. & Hill, R.L. The role of alpha-lactalbumin and the A protein in lactose synthetase: A unique mechanism for the control of a biological reaction. Proc. natn. Acad. Sci. U.S.A. 59, 491–497 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandrin, M., Fodor, W., Mouthtouris, E. et al. Enzymatic remodelling of the carbohydrate surface of a xenogenic cell substantially reduces human antibody binding and complement-mediated cytolysis. Nat Med 1, 1261–1267 (1995). https://doi.org/10.1038/nm1295-1261

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1295-1261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing