Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence

Abstract

Genes involved in fatty acid catabolism have undergone extensive duplication in the genus Mycobacterium, which includes the etiologic agents of leprosy and tuberculosis. Here, we show that prokaryotic- and eukaryotic-like isoforms of the glyoxylate cycle enzyme isocitrate lyase (ICL) are jointly required for fatty acid catabolism and virulence in Mycobacterium tuberculosis. Although deletion of icl1 or icl2, the genes that encode ICL1 and ICL2, respectively, had little effect on bacterial growth in macrophages and mice, deletion of both genes resulted in complete impairment of intracellular replication and rapid elimination from the lungs. The feasibility of targeting ICL1 and ICL2 for chemical inhibition was shown using a dual-specific ICL inhibitor, which blocked growth of M. tuberculosis on fatty acids and in macrophages. The absence of ICL orthologs in mammals should facilitate the development of glyoxylate cycle inhibitors as new drugs for the treatment of tuberculosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glyoxylate cycle and related metabolic pathways in M. tuberculosis.
Figure 2: Overlapping roles of ICL1 and ICL2 in fatty acid catabolism.
Figure 3: Virulence of ICL-deficient M. tuberculosis in mice.
Figure 4: Survival of ICL-deficient M. tuberculosis in macrophages.
Figure 5: Chemical inhibition of ICL blocks growth of M. tuberculosis on fatty acids.
Figure 6: Chemical inhibition of ICL blocks M. tuberculosis growth in macrophages.

Similar content being viewed by others

References

  1. Smith, H. Questions about the behaviour of bacterial pathogens in vivo . Phil. Trans. R. Soc. Lond. B 355, 551–564 (2000).

    Article  CAS  Google Scholar 

  2. McDermott, W. Microbial persistence. Yale J. Biol. Med. 30, 257–291 (1958).

    CAS  PubMed  Google Scholar 

  3. Charpentier, E. & Tuomanen, E. Mechanisms of antibiotic resistance and tolerance in Streptococcus pneumoniae . Microbes Infect. 2, 1855–1864 (2000).

    Article  CAS  Google Scholar 

  4. Gomez, J.E. & McKinney, J.D. Mycobacterium tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb.) 84, 29–44 (2004).

    Article  Google Scholar 

  5. Boshoff, H.I. & Barry, C.E., Tuberculosis - metabolism and respiration in the absence of growth. Nat. Rev. Microbiol. 3, 70–80 (2005).

    Article  CAS  Google Scholar 

  6. Segal, W. & Bloch, H. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro . J. Bacteriol. 72, 132–141 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sassetti, C.M. & Rubin, E.J. Genetic requirements for mycobacterial survival during infection. Proc. Natl Acad. Sci. USA 100, 12989–12994 (2003).

    Article  CAS  Google Scholar 

  8. Keating, L.A. et al. The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth. Mol. Microbiol. 56, 163–174 (2005).

    Article  CAS  Google Scholar 

  9. Collins, D.M. et al. Production of avirulent mutants of Mycobacterium bovis with vaccine properties by the use of illegitimate recombination and screening of stationary-phase cultures. Microbiology 148, 3019–3027 (2002).

    Article  CAS  Google Scholar 

  10. Liu, K. et al. pckA-deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages. Microbiology 149, 1829–1835 (2003).

    Article  CAS  Google Scholar 

  11. Kornberg, H.L. & Krebs, H.A. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 179, 988–991 (1957).

    Article  CAS  Google Scholar 

  12. Pertierra, A.G. & Cooper, R.A. Pyruvate formation during the catabolism of simple hexose sugars by Escherichia coli: studies with pyruvate kinase-negative mutants. J. Bacteriol. 129, 1208–1214 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  Google Scholar 

  14. Fleischmann, R.D. et al. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol. 184, 5479–5490 (2002).

    Article  CAS  Google Scholar 

  15. Höner zu Bentrup, K. et al. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis . J. Bacteriol. 181, 7161–7167 (1999).

    PubMed  PubMed Central  Google Scholar 

  16. Timm, J. et al. Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc. Natl Acad. Sci. USA 100, 14321–14326 (2003).

    Article  CAS  Google Scholar 

  17. McKinney, J.D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000).

    Article  CAS  Google Scholar 

  18. Idnurm, A. & Howlett, B.J. Isocitrate lyase is essential for pathogenicity of the fungus Leptosphaeria maculans to canola (Brassica napus). Eukaryot. Cell 1, 719–724 (2002).

    Article  CAS  Google Scholar 

  19. Lorenz, M.C. & Fink, G.R. The glyoxylate cycle is required for fungal virulence. Nature 412, 83–86 (2001).

    Article  CAS  Google Scholar 

  20. Solomon, P.S. et al. Pathogenicity of Stagonospora nodorum requires malate synthase. Mol. Microbiol. 53, 1065–1073 (2004).

    Article  CAS  Google Scholar 

  21. Vereecke, D. et al. Chromosomal locus that affects pathogenicity of Rhodococcus fascians . J. Bacteriol. 184, 1112–1120 (2002).

    Article  CAS  Google Scholar 

  22. Wang, Z-Y. et al. The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea . Mol. Microbiol. 47, 1601–1612 (2003).

    Article  CAS  Google Scholar 

  23. Vanni, P. et al. Comparative structure, function and regulation of isocitrate lyase, an important assimilatory enzyme. Comp. Biochem. Physiol. 95B, 431–458 (1970).

    Google Scholar 

  24. Sharma, V. et al. Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis . Nat. Struct. Biol. 7, 663–668 (2000).

    Article  CAS  Google Scholar 

  25. Britton, K. et al. The crystal structure and active site location of isocitrate lyase from the fungus Aspergillus nidulans . Structure 8, 349–362 (2000).

    Article  CAS  Google Scholar 

  26. Wendisch, V.F. et al. Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J. Bacteriol. 182, 3088–3096 (2000).

    Article  CAS  Google Scholar 

  27. El-Sadr, W.M. et al. A review of efficacy studies of 6-month short-course therapy for tuberculosis among patients infected with human immunodeficiency virus: differences in study outcomes. Clin. Infect. Dis. 32, 623–632 (2001).

    Article  CAS  Google Scholar 

  28. Flynn, J.L. & Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 19, 93–129 (2001).

    Article  CAS  Google Scholar 

  29. Russell, D.G. Mycobacterium tuberculosis: here today, and here tomorrow. Nat. Rev. Mol. Cell Biol. 2, 569–577 (2001).

    Article  CAS  Google Scholar 

  30. Nishino, H. et al. Acute 3-nitropropionic acid intoxication induces striatal astrocytic cell death and dysfunction of the blood-brain barrier: involvement of dopamine toxicity. Neurosci. Res. 27, 343–355 (1997).

    Article  CAS  Google Scholar 

  31. Chang, D-E. et al. Carbon nutrition of Escherichia coli in the mouse intestine. Proc. Natl Acad. Sci. USA 101, 7427–7432 (2004).

    Article  CAS  Google Scholar 

  32. Chico-Calero, I. et al. Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria . Proc. Natl Acad. Sci. USA 99, 431–436 (2002).

    Article  CAS  Google Scholar 

  33. Eriksson, S. et al. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica . Mol. Microbiol. 47, 103–118 (2003).

    Article  CAS  Google Scholar 

  34. Schnappinger, D. et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198, 693–704 (2003).

    Article  CAS  Google Scholar 

  35. Ehrt, S. et al. Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. Nucleic Acids Res. 33, e21 (2005).

    Article  Google Scholar 

  36. Blokpoel, M.C. et al. Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Res. 33, e22 (2005).

    Article  Google Scholar 

  37. Fischer, E. & Sauer, U. A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli . J. Biol. Chem. 278, 46446–46451 (2003).

    Article  CAS  Google Scholar 

  38. Peters-Wendisch, P. et al. Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology 144, 915–927 (1998).

    Article  CAS  Google Scholar 

  39. Kondo, E. & Kanai, K. An attempt to cultivate mycobacteria in simple synthetic liquid medium containing lecithin-cholesterol liposomes. Jpn. J. Med. Sci. Biol. 29, 109–121 (1976).

    Article  CAS  Google Scholar 

  40. Raynaud, C. et al. Phospholipases C are involved in the virulence of Mycobacterium tuberculosis . Mol. Microbiol. 45, 203–217 (2002).

    Article  CAS  Google Scholar 

  41. Daniel, J. et al. Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J. Bacteriol. 186, 5017–5030 (2004).

    Article  CAS  Google Scholar 

  42. Claes, W.A. et al. Identification of two prpDBC gene clusters in Corynebacterium glutamicum and their involvement in propionate degradation via the 2-methylcitrate cycle. J. Bacteriol. 184, 2728–2739 (2002).

    Article  CAS  Google Scholar 

  43. Tabuchi, T. & Uchiyama, H. Methylcitrate condensing and methylisocitrate cleaving enzymes; evidence for the pathway of oxidation of propionyl-CoA to pyruvate via C7-tricarboxylic acids. Agr. Biol. Chem. 39, 2035–2042 (1975).

    CAS  Google Scholar 

  44. Luttik, M.A. et al. The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism. J. Bacteriol. 182, 7007–7013 (2000).

    Article  CAS  Google Scholar 

  45. Ranes, M. et al. Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum: construction of a “Mini” Mycobacterium-Escherichia coli shuttle vector. J. Bacteriol. 172, 2793–2797 (1990).

    Article  CAS  Google Scholar 

  46. Prentki, P. & Krisch, H.M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29, 303–313 (1984).

    Article  CAS  Google Scholar 

  47. Pavelka, M.S., Jr & Jacobs, W.R., Jr. Comparison of the construction of unmarked deletion mutations in Mycobacterium smegmatis, Mycobacterium bovis bacillus Calmette-Guerin, and Mycobacterium tuberculosis H37Rv by allelic exchange. J. Bacteriol. 181, 4780–4789 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stover, C.K. et al. New use of BCG for recombinant vaccines. Nature 351, 456–460 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Mirkovic and A. Sâli for construction of the ICL2 in silico model, B. Hanna for use of the BACTEC apparatus, J. Timm for assistance with real-time RT-PCR assays, M. Glickman for providing the cosmid containing icl2, S. Ehrt for providing the L-cell line and W.T. Chan and P. Giannakas for technical assistance. E.J.M.-E was supported by a Robert D. Watkins Graduate Fellowship from the American Society for Microbiology. J.D.M. acknowledges support from the Sequella Global Tuberculosis Foundation, the Ellison Medical Foundation, the Sinsheimer Fund and the Irma T. Hirschl Trust. This work was funded by grants (to J.D.M.) from GlaxoSmithKline and the US National Institutes of Health (AI46392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D McKinney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Enzymes, genes and genome designations. (PDF 207 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Elías, E., McKinney, J. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11, 638–644 (2005). https://doi.org/10.1038/nm1252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing