Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies


To determine the protective potential of the humoral immune response against HIV-1 in vivo we evaluated the potency of three neutralizing antibodies (2G12, 2F5 and 4E10) in suppressing viral rebound in six acutely and eight chronically HIV-1–infected individuals undergoing interruption of antiretroviral treatment (ART). Only two of eight chronically infected individuals showed evidence of a delay in viral rebound during the passive immunization. Rebound in antibody-treated acutely infected individuals upon cessation of ART was substantially later than in a control group of 12 individuals with acute infection. Escape mutant analysis showed that the activity of 2G12 was crucial for the in vivo effect of the neutralizing antibody cocktail. By providing further direct evidence of the potency, breadth and titers of neutralizing antibodies that are required for in vivo activity, these data underline both the potential and the limits of humoral immunity in controlling HIV-1 infection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Analysis of viral rebound upon cessation of ART in 14 passively immunized subjects.
Figure 2: Comparison of virus rebound in acutely infected subjects with and without passive immunization.
Figure 3: Antibody escape.
Figure 4: Response analysis.


  1. 1

    Letvin, N.L. & Walker, B.D. Immunopathogenesis and immunotherapy in AIDS virus infections. Nat. Med. 9, 861–866 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Pantaleo, G. & Koup, R.A. Correlates of immune protection in HIV-1 infection: what we know, what we don't know, what we should know. Nat. Med. 10, 806–810 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Haigwood, N.L. & Stamatatos, L. Role of neutralizing antibodies in HIV infection. AIDS 17 Suppl 4, S67–S71 (2003).

    Article  Google Scholar 

  4. 4

    Parren, P.W., Moore, J.P., Burton, D.R. & Sattentau, Q.J. The neutralizing antibody response to HIV-1: viral evasion and escape from humoral immunity. AIDS 13, S137–S162 (1999).

    CAS  PubMed  Google Scholar 

  5. 5

    Baba, T.W. et al. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med. 6, 200–206 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Mascola, J.R. et al. Protection of macaques against vaginal transmission of a pathogenic HIV- 1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 6, 207–210 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Mascola, J.R. et al. Protection of Macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J. Virol. 73, 4009–4018 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Veazey, R.S. et al. Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nat. Med. 9, 343–346 (2003).

    CAS  Article  Google Scholar 

  9. 9

    Haigwood, N.L. et al. Passive immunotherapy in simian immunodeficiency virus-infected macaques accelerates the development of neutralizing antibodies. J. Virol. 78, 5983–5995 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Parren, P.W. et al. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro . J. Virol. 75, 8340–8347 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Poignard, P. et al. Neutralizing antibodies have limited effects on the control of established HIV-1 infection in vivo . Immunity 10, 431–438 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Gauduin, M.C. et al. Passive immunization with a human monoclonal antibody protects hu-PBL- SCID mice against challenge by primary isolates of HIV-1. Nat. Med. 3, 1389–1393 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Shibata, R. et al. Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys. Nat. Med. 5, 204–210 (1999).

    CAS  Article  Google Scholar 

  14. 14

    Andrus, L. et al. Passive immunization with a human immunodeficiency virus type 1- neutralizing monoclonal antibody in Hu-PBL-SCID mice: isolation of a neutralization escape variant. J. Infect. Dis. 177, 889–897 (1998).

    CAS  Article  Google Scholar 

  15. 15

    Montefiori, D.C., Hill, T.S., Vo, H.T., Walker, B.D. & Rosenberg, E.S. Neutralizing antibodies associated with viremia control in a subset of individuals after treatment of acute human immunodeficiency virus type 1 infection. J. Virol. 75, 10200–10207 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Cao, Y., Qin, L., Zhang, L., Safrit, J. & Ho, D.D. Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. N. Engl. J. Med. 332, 201–208 (1995).

    CAS  Article  Google Scholar 

  17. 17

    Carotenuto, P., Looij, D., Keldermans, L., de Wolf, F. & Goudsmit, J. Neutralizing antibodies are positively associated with CD4+ T-cell counts and T-cell function in long-term AIDS-free infection. AIDS 12, 1591–1600 (1998).

    CAS  Article  Google Scholar 

  18. 18

    Montefiori, D.C. et al. Neutralizing and infection-enhancing antibody responses to human immunodeficiency virus type 1 in long-term nonprogressors. J. Infect. Dis. 173, 60–67 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Pilgrim, A.K. et al. Neutralizing antibody responses to human immunodeficiency virus type 1 in primary infection and long-term-nonprogressive infection. J. Infect. Dis. 176, 924–932 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Armbruster, C. et al. A phase I trial with two human monoclonal antibodies (hMAb 2F5, 2G12) against HIV-1. AIDS 16, 227–233 (2002).

    CAS  Article  Google Scholar 

  21. 21

    Stiegler, G. et al. Antiviral activity of the neutralizing antibodies 2F5 and 2G12 in asymptomatic HIV-1-infected humans: a phase I evaluation. AIDS 16, 2019–2025 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Armbruster, C. et al. Passive immunization with the anti-HIV-1 human monoclonal antibody (hMAb) 4E10 and the hMAb combination 4E10/2F5/2G12. J. Antimicrob. Chemother. 54, 915–920 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Vittecoq, D. et al. Passive immunotherapy in AIDS: a double-blind randomized study based on transfusions of plasma rich in anti-human immunodeficiency virus 1 antibodies vs. transfusions of seronegative plasma. Proc. Natl. Acad. Sci. USA 92, 1195–1199 (1995).

    CAS  Article  Google Scholar 

  24. 24

    Jacobson, J.M. et al. Passive immunotherapy in the treatment of advanced human immunodeficiency virus infection. J. Infect. Dis. 168, 298–305 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Gunthard, H.F. et al. A phase I/IIA clinical study with a chimeric mouse-human monoclonal antibody to the V3 loop of human immunodeficiency virus type 1 gp120. J. Infect. Dis. 170, 1384–1393 (1994).

    CAS  Article  Google Scholar 

  26. 26

    Cavacini, L.A. et al. Phase I study of a human monoclonal antibody directed against the CD4-binding site of HIV type 1 glycoprotein 120. AIDS Res. Hum. Retroviruses 14, 545–550 (1998).

    CAS  Article  Google Scholar 

  27. 27

    Arendrup, M. et al. Autologous HIV-1 neutralizing antibodies: emergence of neutralization- resistant escape virus and subsequent development of escape virus neutralizing antibodies. J. Acquir. Immune Defic. Syndr. 5, 303–307 (1992).

    CAS  Article  Google Scholar 

  28. 28

    McKeating, J.A. et al. Characterization of HIV-1 neutralization escape mutants. AIDS 3, 777–784 (1989).

    CAS  Article  Google Scholar 

  29. 29

    Richman, D.D., Wrin, T., Little, S.J. & Petropoulos, C.J. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc. Natl. Acad. Sci. USA 100, 4144–4149 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Watkins, B.A. et al. Immune escape by human immunodeficiency virus type 1 from neutralizing antibodies: evidence for multiple pathways. J. Virol. 67, 7493–7500 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Calarota, S.A. & Weiner, D.B. Present status of human HIV vaccine development. Aids 17 Suppl 4, S73–S84 (2003).

    Article  Google Scholar 

  33. 33

    Trkola, A. et al. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J. Virol. 70, 1100–1108 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Zwick, M.B. et al. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J. Virol. 75, 10892–10905 (2001).

    CAS  Article  Google Scholar 

  35. 35

    Sanders, R.W. et al. The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120. J. Virol. 76, 7293–7305 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Trkola, A. et al. Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG. J. Virol. 69, 6609–6617 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Muster, T. et al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J. Virol. 67, 6642–6647 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Purtscher, M. et al. A broadly neutralizing human monoclonal antibody against gp41 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses 10, 1651–1658 (1994).

    CAS  Article  Google Scholar 

  39. 39

    Stiegler, G. et al. A potent cross-clade neutralizing human monoclonal antibody against a novel epitope on gp41 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses 17, 1757–1765 (2001).

    CAS  Article  Google Scholar 

  40. 40

    Binley, J.M. et al. Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J. Virol. 78, 13232–13252 (2004).

    CAS  Article  Google Scholar 

  41. 41

    Rusert, P. et al. Virus isolates during acute and chronic HIV infection show distinct pattern of sensitivity to entry inhibitors. J. Virol. (in the press).

  42. 42

    Fagard, C. et al. A prospective trial of structured treatment interruptions in human immunodeficiency virus infection. Arch. Intern. Med. 163, 1220–1226 (2003).

    Article  Google Scholar 

  43. 43

    Fagard, C. et al. A controlled trial of granulocyte macrophage-colony stimulating factor during interruption of HAART. AIDS 17, 1487–1492 (2003).

    CAS  Article  Google Scholar 

  44. 44

    Smith, D.E., Walker, B.D., Cooper, D.A., Rosenberg, E.S. & Kaldor, J.M. Is antiretroviral treatment of primary HIV infection clinically justified on the basis of current evidence? AIDS 18, 709–718 (2004).

    Article  Google Scholar 

  45. 45

    Jolly, C., Kashefi, K., Hollinshead, M. & Sattentau, Q.J. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J. Exp. Med. 199, 283–293 (2004).

    CAS  Article  Google Scholar 

  46. 46

    Pantaleo, G. et al. Effect of anti-V3 antibodies on cell-free and cell-to-cell human immunodeficiency virus transmission. Eur. J. Immunol. 25, 226–231 (1995).

    CAS  Article  Google Scholar 

  47. 47

    Gibaldi, M. & Perrier, D. Pharmacokinetics p. 329 (Marcel Dekker, New York, 1975).

    Google Scholar 

  48. 48

    Schockmel, G.A., Yerly, S. & Perrin, L. Detection of low HIV-1 RNA levels in plasma. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 14, 179–183 (1997).

    CAS  Article  Google Scholar 

  49. 49

    Rusert, P. et al. Quantification of infectious HIV-1 plasma viral load using a boosted in vitro infection protocol. Virology 326, 113–129 (2004).

    CAS  Article  Google Scholar 

Download references


Support was provided by the Swiss National Science Foundation (grant PP00B-102647 to A.T. and grant 3100A0-103748 to H.G. and A.T.), research grants from the Union Bank of Switzerland, the Gebert-Rüf foundation (P-041/02) and the FAIR Foundation to A.T. and H.G., and by a research grant of the Kanton Zürich. We thank our patients for their commitment, M. Winniger, U. Berberat, R. Hafner, B. Hasse, U. Karrer, R. Oberholzer, C. Schneider and C. Grube for patient care, J. Böni and F. Burgener for technical help, M. Schlumpf for infrastructural help, E. Gremlich for study monitoring, I. Nievergelt for administrative assistance and H. Hengartner and R. Zinkernagel for their support in initiating this study.

Author information



Corresponding authors

Correspondence to Alexandra Trkola or Huldrych F Günthard.

Ethics declarations

Competing interests

Gabriela Stiegler, Brigitta Vcelar and Hermann Katinger are from Polymun Scientific, a company whose aim is to advance the development of the human monoclonal antibodies from clinical trials to market approval for prevention and treatment of HIV infection.

Supplementary information

Supplementary Fig. 1

Viremia rebounds during previous STIs in chronic patients participating in passive immunization trial. (PDF 81 kb)

Supplementary Fig. 2

Characteristics of patients with acute HIV-1 infection. (PDF 97 kb)

Supplementary Table 1

Patient characteristics (PDF 24 kb)

Supplementary Table 2

Pharmacokinetic parameters (PDF 18 kb)

Supplementary Table 3

History of treatment interruption of chronically infected individuals participating in passive immunization trial (PDF 25 kb)

Supplementary Table 4

Sequence analysis of 2F5 and 4E10 epitope (PDF 14 kb)

Supplementary Table 5

Antibody sensitivity of sequential isolates derived during STIs (PDF 16 kb)

Supplementary Note (PDF 38 kb)

Supplementary Methods (PDF 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Trkola, A., Kuster, H., Rusert, P. et al. Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies. Nat Med 11, 615–622 (2005).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing