Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SCAP ligands are potent new lipid-lowering drugs

Abstract

Upregulation of low-density lipoprotein receptor (LDLr) is a key mechanism to control elevated plasma LDL-cholesterol levels. Here we identify a new class of compounds that directly binds to the sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP). We show that a 14C-labeled, photo-activatable analog specifically labeled both SCAP and a truncated form of SCAP containing the sterol-sensing domain. When administered to hyperlipidemic hamsters, SCAP ligands reduced both LDL cholesterol and triglycerides levels by up to 80% with a three-fold increase in LDLr mRNA in the livers. Using human hepatoma cells, we show that these compounds act through the sterol-responsive element of the LDLr promoter and activate the SCAP/SREBP pathway, leading to increased LDLr expression and activity, even in presence of excess of sterols. These findings have led to the identification of a class of compounds that represent a promising new class of hypolipidemic drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparative activity of compounds to activate LDL receptor expression.
Figure 2: GW compounds activate LDL receptor expression in the presence of sterols.
Figure 3: SCAP ligands induce expression of a functional LDL receptor.
Figure 4: GW compounds bind to SCAP and activate the translocation of SREBP.
Figure 5: SCAP ligand reduces plasma LDL cholesterol and triglycerides in hamsters.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ansell, B.J., Watson, K.E. & Fogelman, A.M. An evidence-based assessment of the NCEP Adult Treatment Panel II guidelines. National Cholesterol Education Program. JAMA 282, 2051–2057 (1999).

    Article  CAS  Google Scholar 

  2. Expert panel on Detection Evaluation and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP). JAMA 285, 2486–2497 (2001).

  3. Kovanen, P.T. & Schneider, W. J. Regulation of the low density lipoprotein (B/E) receptor. Adv. Vasc. Biol. 5, 165–185 (1999).

    CAS  Google Scholar 

  4. Brown, M.S. & Goldstein, J.L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).

    Article  CAS  Google Scholar 

  5. Brown, M.S. & Goldstein, J.L. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997).

    Article  CAS  Google Scholar 

  6. Horton, J.D. & Shimonura, I. Sterol regulatory element-binding proteins: activators of cholesterol and fatty acid biosynthesis. Curr. Opin. Lipidol. 10, 143–150 (1999).

    Article  CAS  Google Scholar 

  7. Briggs, M.R. et al. Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. J. Biol. Chem. 268, 14490–14496 (1993).

    CAS  PubMed  Google Scholar 

  8. Natarajan, R., Ghosh, S. & McLean Grogan, W. Molecular cloning of the promoter for rat hepatic neutral cholesterol ester hydrolase: Evidence for transcriptional regulation by sterols. Biochem. Biophys. Res. Commun. 243, 349–355 (1998).

    Article  CAS  Google Scholar 

  9. Sato, R. et al. Sterol regulatory element-binding protein negatively regulates microsomal triglycerides transfer protein gene transcription. J. Biol. Chem. 274, 24714–24720 (1999).

    Article  CAS  Google Scholar 

  10. Luong, A. et al. Molecular characterization of human Acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding protein. J. Biol. Chem. 275, 26458–26466 (2000).

    Article  CAS  Google Scholar 

  11. Makar, R.S., Lipsky, P.E. & Cuthbert, J.A. Multiple mechanisms, independent of sterol regulatory element binding proteins, regulate low density lipoprotein gene transcription. J. Lipid Res. 41, 762–774 (2000).

    CAS  PubMed  Google Scholar 

  12. Liu, J. et al. Identification of a novel sterol-independent regulatory element in the human low density lipoprotein receptor promoter. J. Biol. Chem. 275, 5214–5221 (2000).

    Article  CAS  Google Scholar 

  13. Ham J. et al. Several different upstream promoter elements can potentiate transactivation by the BPV-1 E2 protein. EMBO J. 10, 2931–2940 (1991).

    Article  CAS  Google Scholar 

  14. Edwards, P.A., Tabor, D., Kast, H.R. & Venkateswaran, A. Regulation of gene expression by SREBP and SCAP. Biochim. Biophys. Acta 1529, 103–113 (2000).

    Article  CAS  Google Scholar 

  15. Hua, X., Nohturfft, A., Goldstein, J.L. & Brown, M.S. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell 87, 415–426 (1996).

    Article  CAS  Google Scholar 

  16. Cheng, D. et al. Secreted site-1 protease cleaves peptides corresponding to luminal loop of sterol regulatory element-binding proteins. J. Biol. Chem. 274, 22805–22812 (1999).

    Article  CAS  Google Scholar 

  17. Duncan, E.A. et al. Second-site cleavage in sterol responsive element-binding protein occurs at transmembrane junction as determined by cysteine panning. J. Biol. Chem. 273, 17801–17809 (1998).

    Article  CAS  Google Scholar 

  18. DeBose-Boyd, R.A. et al. Transport-dependent proteolysis of SREBP: Relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell 99, 703–712 (1999).

    Article  CAS  Google Scholar 

  19. Nohturfft, A., Yabe, D., Goldstein, J.L., Brown, M.S. & Espenshade, P.J. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell 102, 315–323 (2000).

    Article  CAS  Google Scholar 

  20. Sakai, J. & Rawson, R.B. The sterol regulatory element-binding protein pathway: control of lipid homeostasis through regulated intracellular transport. Curr. Opin. Lipidol. 12, 261–266 (2001).

    Article  CAS  Google Scholar 

  21. Yang, T., Goldstein, J.L. & Brown, M.S. Overexpression of membrane domain of SCAP prevents sterols from inhibiting SCAP-SREBP exit from endoplasmic reticulum. J. Biol. Chem. 275, 29881–29886 (2000).

    Article  CAS  Google Scholar 

  22. Hua, X., Sakai, J., Brown, M.S. & Goldstein, J.L. Regulated cleavage of sterol regulatory element binding proteins requires sequences on both sides of the endoplasmic reticulum membrane. J. Biol. Chem. 271, 10379–10384 (1996).

  23. Aguilar-Salinas, C.A., Barrett, H. & Schonfeld, G. Metabolic modes of action of the statins in the hyperlipoproteinemia. Atherosclerosis 141, 203–207 (1998).

    Article  CAS  Google Scholar 

  24. Blumenthal, R.S. Statins: effective antiatherosclerotic therapy. Am. Heart J. 139, 577–583 (2000).

    Article  CAS  Google Scholar 

  25. Vaughan, C.J., Gotto, A.M. & Basson, C.T. The evolving role of statins in the management of atherosclerosis. J. Am. Coll. Cardiol. 35, 1–10 (2000).

    Article  CAS  Google Scholar 

  26. Shimomura, I. et al. Cholesterol feeding reduces nuclear forms of sterol regulatory element binding proteins in hamster liver. Proc. Natl. Acad. Sci. USA 94, 12354–12359 (1997).

    Article  CAS  Google Scholar 

  27. Sheng, Z., Otani, H., Brown, M.S. & Goldstein, J.L. Independent regulation of sterol regulatory element-binding proteins 1 and 2 in hamster liver. Proc. Natl. Acad. Sci. USA 92, 935–938 (1995).

    Article  CAS  Google Scholar 

  28. Thompson, G.R. & Naoumova, R.P. Novel lipid-regulating drugs. Expert Opin. Investig. Drugs 9, 2619–2628 (2000).

    Article  CAS  Google Scholar 

  29. Chong, P.H. & Bachenheimer, B.S. Current, new and future treatments in dyslipidaemia and atherosclerosis. Drugs 60, 55–93 (2000).

    Article  CAS  Google Scholar 

  30. Brown, W.V. Novel approaches to lipid lowering: What is on the horizon? Am. J. Cardiol. 87, 23B–27B (2001).

    Article  CAS  Google Scholar 

  31. Olsson, A.G. Statin therapy and reductions in low density lipoprotein cholesterol: initial clinical data on the potent new statin rosuvastatin. Am. J. Cardiol. 87, 33B–36b (2001).

    Article  CAS  Google Scholar 

  32. Ma, P.T.S. et al. Mevinolin, an inhibitor of cholesterol synthesis, induces mRNA for low density lipoprotein receptor in liver of hamsters and rabbits. Proc. Natl. Acad. Sci. USA 83, 8370–8374 (1986).

    Article  CAS  Google Scholar 

  33. Bilheimer, D.W. et al. Mevinolin and colestipol stimulate receptor-mediated clearance of low density lipoprotein from plasma in familial hypercholesterolemia heterozygotes. Proc. Natl. Acad. Sci. USA 80, 4124–4218 (1983).

    Article  CAS  Google Scholar 

  34. Matsuda, M. et al. SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev. 15, 1206–1216 (2001).

    Article  CAS  Google Scholar 

  35. Hua, X. et al. Hairpin orientation of sterol regulatory element-binding protein-2 in cell membranes as determined by protease protection. J. Biol. Chem. 270, 29422–29427 (1995).

    Article  CAS  Google Scholar 

  36. Benoist, F. & Grand-Perret, T. Co-translational degradation of apolipoprotein B100 by the proteasome is prevented by microsomal triglyceride transfer protein. J. Biol. Chem. 272, 20435–20442 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Guillard, V. Paillard and V. Baudet for technical assistance; T. Dean for synthesis of GW 707; and J.C. Rodriguez for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Grand-Perret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grand-Perret, T., Bouillot, A., Perrot, A. et al. SCAP ligands are potent new lipid-lowering drugs. Nat Med 7, 1332–1338 (2001). https://doi.org/10.1038/nm1201-1332

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1201-1332

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing