Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

In vivo veritas: The search for TB drug targets goes live

Abstract

The term `microbial persistence' describes a phenomenon whereby microorganisms which are drug-susceptible when tested outside the body are nevertheless capable of surviving within the body despite intensive therapy with the appropriate antimicrobial drug. In clinical practice this phenomenon obviously has to do with the post-treatment `carrier state' and with post-treatment relapse. In short, it is this phenomenon which is responsible for our inability to eradicate an infection from a person or a community by the use of drugs. — Walsh McDermott, The Yale Journal of Biology and Medicine 30, 257 (1958).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, The Mitchison hypothesis.

Steve Horwitz

Similar content being viewed by others

References

  1. Maher, D. & Raviglione, M.C. The global epidemic of tuberculosis: a World Health Organization perspective. in Tuberculosis and Nontuberculous Mycobacterial Infections, Fourth Edition (ed. Schlossberg, D.) 104–115 (W.B. Saunders Company, Philadelphia, 1999).

    Google Scholar 

  2. Waksman, S.A. The Conquest of Tuberculosis (Robert Hale Limited, London, 1964).

    Google Scholar 

  3. Ehrlich, P. Address in pathology on chemotherapeutics: scientific principles, methods, and results. Lancet 2, 445–451 (1913).

    Google Scholar 

  4. McCune, R.M., Tompsett, R. & McDermott, W. Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J. Exp. Med. 104, 763–801 (1956).

    Article  CAS  Google Scholar 

  5. Barclay, W.R., Ebert, R.H., Le Roy, G.V., Manthei, R.W. & Roth, L.J. Distribution and excretion of radioactive isoniazid in tuberculosis patients. JAMA 151, 1384–1388 (1953).

    CAS  Google Scholar 

  6. Clark, D.W. Genetically determined variability in acetylation and oxidation. Therapeutic implications. Drugs 29, 342–375 (1985).

    Article  CAS  Google Scholar 

  7. McCune, R., Lee, S.H., Deuschle, K. & McDermott, W. Ineffectiveness of isoniazid in modifying the phenomenon of microbial persistence. Am. Rev. Tuberc. Pulm. Dis. 76, 1106–1109 (1957).

    CAS  Google Scholar 

  8. Jindani, A., Aber, V.R., Edwards, E.A. & Mitchison, D.A. The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am. Rev. Respir. Dis. 121, 939–949 (1980).

    CAS  Google Scholar 

  9. Mitchison, D.A. Basic mechanisms of chemotherapy. Chest 76 (Suppl.), 771–781 (1979).

    Article  CAS  Google Scholar 

  10. Handwerger, S. & Tomasz, A. Antibiotic tolerance among clinical isolates of bacteria. Rev. Infect. Dis. 7, 368–386 (1985).

    Article  CAS  Google Scholar 

  11. Vandiviere, H.M., Loring, W.E., Melvin, I. & Willis, S. The treated pulmonary lesion and its tubercle bacillus. The death and resurrection. Am. J. Med. Sci. 232, 30–37 (1956).

    Article  CAS  Google Scholar 

  12. Segal, W. & Bloch, H. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J. Bacteriol. 72, 132–141 (1956).

    CAS  Google Scholar 

  13. McKinney, J.D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000).

    Article  CAS  Google Scholar 

  14. Sharma, V. et al. Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis. Nature Struct. Biol. 7, 663–668 (2000).

    Article  CAS  Google Scholar 

  15. Ramakrishnan, L., Federspiel, N.A. & Falkow, S. Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288, 1436–1439 (2000).

    Article  CAS  Google Scholar 

  16. Berthet, F.X. et al. Attenuation of virulence by disruption of the Mycobacterium tuberculosis erp gene. Science 282, 759–762 (1998).

    Article  CAS  Google Scholar 

  17. Camacho, L.R., Ensergueix, D., Perez, E., Gicquel, B. & Guilhot, C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34, 257–267 (1999).

    Article  CAS  Google Scholar 

  18. Cox, J.S., Chen, B., McNeil, M. & Jacobs, W.R., Jr. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999).

    Article  CAS  Google Scholar 

  19. Buchmeier, N. et al. A parallel intraphagosomal survival strategy shared by Mycobacterium tuberculosis and Salmonella enterica. Mol. Microbiol. 35, 1375–1382 (2000).

    Article  CAS  Google Scholar 

  20. De Voss, J.J. et al. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc. Natl. Acad. Sci. USA 97, 1252–1257 (2000).

    Article  CAS  Google Scholar 

  21. Manabe, Y.C., Saviola, B.J., Sun, L., Murphy, J.R. & Bishai, W.R. Attenuation of virulence in Mycobacterium tuberculosis expressing a constitutively active iron repressor. Proc. Natl. Acad. Sci. USA 96, 12844–12848 (1999).

    Article  CAS  Google Scholar 

  22. Jackson, M. et al. Persistence and protective efficacy of a Mycobacterium tuberculosis auxotroph vaccine. Infect. Immun. 67, 2867–2873 (1999).

    CAS  Google Scholar 

  23. Hondalus, M.K. et al. Attenuation of and protection by a leucine auxotrophic mutant of Mycobacterium tuberculosis. Infect. Immun. 68, 2888–2898 (2000).

    Article  CAS  Google Scholar 

  24. Chen, P., Ruiz, R.E., Li, Q., Silver, R.F. & Bishai, W.R. Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate sigma factor gene, sigF. Infect. Immun. 68, 5575–5580 (2000).

    Article  CAS  Google Scholar 

  25. Stewart, G.R. et al. Deregulation of the Hsp70 heat shock response results in reduced survival of Mycobacterium tuberculosis in the chronic phase of infection (Abstract 41). Presented at the ASM Conference on Tuberculosis: Past, Present, and Future (2000).

  26. Asea, A et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nature Med. 6, 435–442 (2000).

    Article  CAS  Google Scholar 

  27. Glickman, M.S., Cox, J.S. & Jacobs, W.R., Jr. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell. 5, 717–727 (2000).

    Article  CAS  Google Scholar 

  28. World Health Organization. Anti-Tuberculosis Drug Resistance in the World (World Health Organization, Geneva, 2000). Online at http://www.who.int/gtb/publications/dritw/index.htm.

  29. Primm, T.P. et al. The stringent response of Mycobacterium tuberculosis is required for long-term survival. J. Bacteriol. 182, 4889–4898 (2000).

    Article  CAS  Google Scholar 

  30. Stover, C.K. et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405, 962–966 (2000).

    Article  CAS  Google Scholar 

  31. Alland, D. et al. Identification of differentially expressed mRNA in prokaryotic organisms by customized amplification libraries (DECAL): the effect of isoniazid on gene expression in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 95, 13227–13232 (1998).

    Article  CAS  Google Scholar 

  32. Wilson, M. et al. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA 96, 12833–12838 (1999).

    Article  CAS  Google Scholar 

  33. Canetti, G. Present aspects of bacterial resistance in tuberculosis. Am. Rev. Respir. Dis. 92, 687–703 (1965).

    CAS  Google Scholar 

  34. Banerjee, A. et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227–230 (1994).

    Article  CAS  Google Scholar 

  35. Mdluli, K. et al. Inhibition of a Mycobacterium tuberculosis β-ketoacyl ACP synthase by isoniazid. Science 280, 1607–1610 (1998).

    Article  CAS  Google Scholar 

  36. Zimhony, O., Cox, J.S., Welch, J.T., Vilcheze, C. & Jacobs, W.R., Jr. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nature Med. 6, 1043–1048 (2000).

    Article  CAS  Google Scholar 

  37. Belanger, A.E. et al. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc. Natl. Acad. Sci. USA 93, 11919–11924 (1996).

    Article  CAS  Google Scholar 

  38. David, H.L., Takayama, K. & Goldman, D.S. Susceptibility of mycobacterial D-alanyl-D-alanine synthetase to D-cycloserine. Am. Rev. Respir. Dis. 100, 579–581 (1969).

    CAS  Google Scholar 

  39. Caceres, N.E. et al. Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis. J. Bacteriol. 179, 5046–5055 (1997).

    Article  CAS  Google Scholar 

  40. Telenti, A. et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341, 647–650 (1993).

    Article  CAS  Google Scholar 

  41. Finken, M., Kirschner, P., Meier, A., Wrede, A. & Bottger, E.C. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol. Microbiol. 9, 1239–1246 (1993).

    Article  CAS  Google Scholar 

  42. Drlica, K., Malik, M., Wang, J.-Y., Levitz, R. & Burger, R.M. The fluoroquinolones as antituberculous agents. In Tuberculosis (eds. Rom, W.N. & Garay, S.) 817–827 (Little, Brown and Co., New York, 1996).

    Google Scholar 

  43. Nopponpunth, V., Sirawaraporn, W., Greene, P.J. & Santi, D.V. Cloning and expression of Mycobacterium tuberculosis and Mycobacterium leprae dihydropteroate synthase in Escherichia coli. J. Bacteriol. 181, 6814–6821 (1999).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. McKinney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKinney, J. In vivo veritas: The search for TB drug targets goes live. Nat Med 6, 1330–1333 (2000). https://doi.org/10.1038/82142

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/82142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing