Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The functional relevance of passenger leukocytes and microchimerism for heart allograft acceptance in the rat

Abstract

With an organ transplant, hematopoietic donor cells are transferred to the recipient. To study the relevance of the resulting microchimerism for allograft acceptance, we analyzed a rat model of cyclosporine-induced tolerance for strongly incompatible heart allografts. Using a monoclonal antibody that detects a donor-specific CD45 allotype (RT7a), we selectively depleted donor leukocytes at different times after transplantation (days 0 or 18). Depletion was similarly effective at both times. However, only depletion on day 0 prevented tolerance induction and was associated with severe acute or chronic graft rejection. This indicates that passenger leukocytes have an essential immunomodulatory effect on the induction phase of allograft acceptance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo effect of treatment with monoclonal antibody against RT7a on circulating RT7a-positive blood cells.
Figure 2: Serial analyses of peripheral blood microchimerism by PCR for a Y-chromosome marker.
Figure 3: Graft histology on day 200 after transplantation.
Figure 4: Cytokine mRNA expression in heart graft tissue on day 200, analyzed by quantitative RT–PCR.

Similar content being viewed by others

References

  1. Starzl, T.E. et al. Cell migration, chimerism, and graft acceptance. Lancet 339, 1579–1582 (1992).

    Article  CAS  Google Scholar 

  2. Starzl T.E. et al. Cell migration and chimerism after whole organ transplantation: The basis of graft acceptance. Hepatology 17, 1127–1152 (1993).

    Article  CAS  Google Scholar 

  3. Starzl, T.E. et al. Donor cell chimerism permitted by immunosuppressive drugs: a new view of organ transplantation. Immunol. Today 14, 326–332 (1993).

    Article  CAS  Google Scholar 

  4. Starzl, T.E. & Zinkernagel, R.M. Antigen localization and migration in immunity and tolerance. N. Engl. J. Med. 339, 1905–1913 (1998).

    Article  CAS  Google Scholar 

  5. McSherry, C. et al. Sequential measurement of peripheral blood allogeneic microchimerism levels and association with pulmonary function. Transplantation 62, 1811–1818 (1996).

    Article  CAS  Google Scholar 

  6. Wood, K. & Sachs, D.H. Chimerism and transplantation tolerance: cause and effect. Immunol. Today 17, 584–587 (1996).

    Article  CAS  Google Scholar 

  7. Schlitt, H.J. et al. Patterns of donor-type microchimerism after heart transplantation. Lancet 343, 1469–1471 (1994).

    Article  CAS  Google Scholar 

  8. Schlitt, H.J., Hundrieser, J., Ringe, B. & Pichlmayr, R. Systemic microchimerism of donor-type associated with irreversible acute liver graft rejection eight years after transplantation. N. Engl. J. Med. 330, 646–647 (1994).

    Article  CAS  Google Scholar 

  9. Hisanaga, M. et al. Development, stability, and clinical correlations of allogeneic microchimerism after solid organ transplantation. Transplantation 61, 40–45 (1996).

    Article  CAS  Google Scholar 

  10. Wonigeit, K. Characterization of the RT-Ly-1 and RT-Ly-2 alloantigenic systems by congenic rat strains. Transplant. Proc. 11, 1631–1635 (1979).

    CAS  PubMed  Google Scholar 

  11. Kampinga, J. et al. RT7-defined alloantigens in rats are part of the leukocyte common antigen family. Scand. J. Immunol. 31, 699–710 (1990).

    Article  CAS  Google Scholar 

  12. Heidecke, C.-D. et al. α/β-T cell receptor-directed therapy in rat allograft recipients. Transplantation 61, 948–956 (1996).

    Article  CAS  Google Scholar 

  13. Lechler, R.I. & Batchelor, J.R. Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J. Exp. Med. 155, 31–41 (1982).

    Article  CAS  Google Scholar 

  14. Sun, J. et al. Deletion of spontaneous rat liver allograft acceptance by donor irradiation. Transplantation 60, 233–236 (1995).

    Article  CAS  Google Scholar 

  15. Schlitt, H.J. Is microchimerism needed for allograft tolerance? Transplant. Proc. 29, 82–84 (1997).

    Article  CAS  Google Scholar 

  16. Ueda, M. et al. Development of microchimerism in pediatric patients after living-related liver transplantation. Clin. Transplant. 11, 193–199 (1997).

    CAS  PubMed  Google Scholar 

  17. Schlitt, H.J. et al. Persistence of donor lymphocytes in liver allograft recipients. Transplantation 56, 1001–1007 (1993).

    Article  CAS  Google Scholar 

  18. Larsen, C.P, Morris, P. & Ausytn, J.M. Migration of dendritic leukocytes from cardiac allografts into host spleens: a novel pathway for initiation of rejection. J. Exp. Med. 171, 307–314 (1990).

    Article  CAS  Google Scholar 

  19. Murase, N. et al. Effect in supralethally irradiated rats of granulocyte colony-stimulating factor and lisofylline on hematopoietic reconstitution by syngeneic bone marrow or whole organ passenger leukocytes. Transplantation 63, 1840–1843 (1997).

    Article  CAS  Google Scholar 

  20. Demetris, A.J. et al. Hematolymphoid cell trafficking, microchimerism, and GVH reactions after liver, bone marrow, and heart transplantation. Transplant. Proc. 25, 3337–3344 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Santin, A.D. et al. The effects of irradiation on the expression of a tumour rejection antigen (heat shock protein gp96) in a human cervical cancer. Int. J. Radiat. Biol. 73, 699–704 (1998).

    Article  CAS  Google Scholar 

  22. Sriwatanawongsa, V., Davies, H.ff., & Calne, R.Y. The essential roles of parenchymal tissues and passenger leukocytes in the tolerance induced by liver grafting in rats. Nature Med. 1, 428–432 (1995).

    Article  CAS  Google Scholar 

  23. Ehl, S. et al. Antigen persistence and time of T-cell tolerization determine the efficacy of tolerization protocols for prevention of skin graft rejection. Nature Med. 4, 1015–1019 (1998).

    Article  CAS  Google Scholar 

  24. Schwarz, R.H. A cell culture model for T lymphocyte clonal anergy. Science 248, 1349–1356 (1990).

    Article  Google Scholar 

  25. Lombardi, G. et al. Antigen presentation by T cells inhibits IL-2 production and induces IL-4 release due to altered cognate signals. J. Immunol. 156, 2769–2775 (1996).

    CAS  PubMed  Google Scholar 

  26. Tsui, T.Y., Deiwick, A., Ko, S. & Schlitt, H.J. Specific immunosuppression by postoperative infusion of allogeneic spleen cells. Requirement of donor MHC expression and graft-versus-host reactivity. Transplantation (in the press).

  27. Thomas, J.M. et al. Veto cells in transplantation tolerance. Clin. Transplant. 8, 195–203 (1994).

    CAS  PubMed  Google Scholar 

  28. Thomas, J.M. Further studies of veto activity in rhesus monkey bone marrow in relation to allograft tolerance and chimerism. Transplantation 57, 101–115 (1994).

    Article  CAS  Google Scholar 

  29. Raddatz, G., Deiwick, A., Sato, T. & Schlitt, H.J. Inhibition of cytotoxic alloreactivity by human allogeneic mononuclear cells: evidence for veto function of CD2+ cells. Immunology 94, 101–108 (1998).

    Article  CAS  Google Scholar 

  30. Tomita, Y., Khan, A. & Sykes, M. Role of intrathymic clonal deletion and peripheral anergy in transplantation tolerance induced by bone marrow transplantation in mice conditioned with a nonmyeloablative regimen. J. Immunol. 153, 1087–1098 (1994).

    CAS  Google Scholar 

  31. Khan, A., Tomita, Y. & Sykes, M. Thymic dependence of loss of tolerance in mixed allogeneic chimeras after depletion of donor antigen. Transplantation 62, 380–387 (1996).

    Article  CAS  Google Scholar 

  32. Ono, K. & Lindsey, E.S. Improved technique of heart transplantation in rats. J. Thorac. Cardiovasc. Surg. 57, 225–229 (1969).

    CAS  PubMed  Google Scholar 

  33. Schwinzer, R., Hedrich H.-J. & Wonigeit, K. T cell differentiation in athymic nude rats (rnu/rnu): demonstration of a distorted T cell subset structure by flow cytometry analysis. Eur. J. Immunol. 19, 1841–1847 (1989).

    Article  CAS  Google Scholar 

  34. Hoffman, R.A. et al. Alloantigen-induced activation of rat splenocytes is regulated by the oxidative metabolism of L-arginine. J. Immunol. 145, 2220–2226 (1990).

    CAS  PubMed  Google Scholar 

  35. Wood, P.J. et al. Prevention of chronic rejection by donor-specific blood transfusion in a new model of chronic cardiac allograft rejection. Transplantation 61, 1440–1443 (1996).

    Article  CAS  Google Scholar 

  36. Demetris, A.J. et al. Analysis of chronic rejection and obliterative arteriopathy. Am. J. Pathol. 150, 563–578 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmid, C., Heemann, U. & Tilney, N.L. Retransplantation reverses mononuclear infiltration but not myointimal proliferation in a rat model of chronic cardiac allograft rejection. Transplantation 61, 1695–1699 (1996).

    Article  CAS  Google Scholar 

  38. Strehlau, J. et al. The intragraft gene activation of markers reflecting T-cell-activation and -cytotoxicity analysed by quantitative RT-PCR in renal transplantation. Clin. Nephrol. 46, 30–33 (1996).

    CAS  PubMed  Google Scholar 

  39. Siebert, P.D. & Larrick, J.W. PCR MIMICS: competitive DNA fragments for use as internal standards in quantitative PCR. BioTechniques 14, 244–249 (1993).

    CAS  PubMed  Google Scholar 

  40. Siegling, A. et al. A novel multispecific competitor fragment for quantitative PCR analysis of cytokine gene expression in rats. J. Immunol. Method 177, 23–28 (1994).

    Google Scholar 

Download references

Acknowledgements

The authors thank L. Hänisch for animal care, M. Giesecke for microsurgical assistance and M.W. Hoffmann for critical review of the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich 265. S.K. was supported by a fellowship of the Alexander von Humboldt Stiftung; his present affiliation is First Department of Surgery, Nara Medical University, Kashihara, Nara 634, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Schlitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, S., Deiwick, A., Jäger, M. et al. The functional relevance of passenger leukocytes and microchimerism for heart allograft acceptance in the rat. Nat Med 5, 1292–1297 (1999). https://doi.org/10.1038/15248

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing