Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia

Abstract

Thrombospondin forms a 'molecular bridge' between phagocytic and apoptotic cells through interaction with αvβ3/CD36. We report here that engagement of CD47, a newly described thrombospondin receptor, by immobilized monoclonal antibody against CD47 or by thrombospondin induced in all B-cell chronic lymphocytic leukemia clones the cytoplasmic features of apoptosis (cell shrinkage, decrease in mitochondrial transmembrane potential and phosphatidylserine externalization) without the nuclear features (chromatin condensation, appearance of single-stranded DNA, DNA fragmentation and cleavage of poly ADP-ribose polymerase). These cytoplasmic events of apoptosis were not prevented by the addition of caspase inhibitor z-VAD-fmk, or by the presence of survival factors (such as interleukin-4 and gamma interferon) or cell activation. Morphological studies confirmed the integrity of the nucleus and showed swelling of the mitochondria. This caspase-independent death pathway may be relevant to the development of alternate therapeutic strategies in chronic lymphocytic leukemia, which remains an incurable disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD5 and CD23 expression on B-CLL lymphocytes after treatment with monoclonal antibody against CD47.
Figure 2: CD47 ligation by immobilized monoclonal antibody against CD47 or by thrombospondin (TSP) induces apoptosis in B-CLL cells.
Figure 3: Induction of apoptosis by monoclonal antibody against CD47 is CD47-mediated but not Fc-mediated and requires CD47 cross-linking.
Figure 4: Apoptosis induced by monoclonal antibody against CD47 is not prevented by survival factors or cell activation.
Figure 5: CD47 ligation induces a caspase-independent cell death.
Figure 6: Morphology of B-CLL cells treated with monoclonal antibody against CD47.
Figure 7: Electron micrographs of B-CLL cells.

Similar content being viewed by others

References

  1. Cheson, B.D. et al. National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood 87, 4990–4997 (1996).

    CAS  PubMed  Google Scholar 

  2. Sarfati, M. et al. Prognostic importance of serum soluble CD23 level in chronic lymphocytic leukemia. Blood 88, 4259– 4264 (1996).

    CAS  PubMed  Google Scholar 

  3. Dighiero, G. et al. Chlorambucil in indolent chronic lymphocytic leukemia. N. Engl. J. Med. 338, 1506–1514 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Keating, M.J. et al. Long-term follow-up of patients with chronic lymphocytic leukemia (CLL) receiving fludarabine regimens as initial therapy. Blood 92, 1165–1171 ( 1998).

    CAS  PubMed  Google Scholar 

  5. Dancescu, M. et al. Interleukin-4 protects chronic lymphocytic leukemic B cells from death by apoptosis and upregulates Bcl-2 expression. J. Exp. Med. 176, 1319–1327 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  6. Fournier, S. et al. The two CD23 isoforms display differential regulation in chronic lymphocytic leukaemia. Br. J. Haematol. 89, 373–379 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Lagneaux, L., Delforge, A., Bron, D., De Bruyn, C. & Stryckmans, P. Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apotosis by contact with normal bone marrow stromal cells. Blood 91, 2387–2396 (1998).

    CAS  PubMed  Google Scholar 

  8. Depraetere, V. & Golstein, P. Dismantling in cell death: Molecular mechanisms and relationship to caspase activation. Scand. J. Immunol. 47, 523–531 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, E. & Korsmeyer, S.J. Molecular thanatopsis: A discourse on the Bcl-2 family and cell death. Blood 88, 386–401 (1996).

    CAS  PubMed  Google Scholar 

  10. Thornberry, N.A. & Lazebnik. Caspases: Enemies within. Science 281, 1312–1316 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  11. Kawahara, A., Ohsawa, Y., Matsumura, H., Uchiyama, Y. & Nagata, S. Caspase-independent cell killing by fas-associated protein with death domain. J. Cell. Biol. 143, 1353–1360 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Maria, R. et al. Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science 277, 1652– 1655 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Lavoie, J.N., Nguyen, M., Marcellus, R.C., Branton, P.E. & Shore, G.C. E4orf4, a novel adenovirus death factor that induces p53-independent apoptosis by a pathway that is not inhibited by zVAD-fmk. J. Cell. Biol. 140, 637– 645 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lesage, S. et al. CD4+ CD8+ thymocytes are preferentially induced to die following CD45 cross-linking, through a novel apoptotic pathway. J. Immunol. 159, 4762– 4771 (1997).

    CAS  PubMed  Google Scholar 

  15. Déas, O. et al. Caspase-independent cell death induced by anti-CD2 or staurosporine in activated human peripheral T lymphocytes. J. Immunol. 161, 3375–3383 (1998).

    PubMed  Google Scholar 

  16. Quignon, F. et al. PML induces a novel caspase-independent death process. Nature Genet. 20, 259–265 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Monney, L. et al. Defects in the ubiquitin pathway induce caspase-independent apoptosis blocked by Bcl-2. J. Biol. Chem. 273, 6121–6131 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Xiang, J., Chao, D.T. & Korsmeyer, S.J. Bax-induced cell death may not require interleukin-1β-converting enzyme-like proteases. Proc. Natl. Acad. Sci. USA 93 , 14559–14563 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Platt, N., da Silva, R.P. & Gordon, S. Recognizing death: the phagocytosis of apoptotic cells. Trends Cell. Biol. 8, 365– 372 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Savill, J. Recognition and phagocytosis of cells undergoing apoptosis. Br. Med. Bull. 53, 491–508 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  21. Savill, J., Hogg, N., Ren, Y. & Hasslet, C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest. 90, 1513–1522 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindberg, F.P., Gresham, H.D., Schwarz, E. & Brown, E.J. Molecular cloning of integrin-associated protein: An immunoglobulin family member with multiple membrane-spanning domains implicated in αvβ3-dependent ligand binding. J. Cell Biol. 123, 485– 496 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, M.-J. & Brown, E.J. Leukocyte response integrin and integrin associated protein act as a signal transduction unit in generation of a phagocyte respiratory burst. J. Exp. Med. 178, 1165–1174 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Gao, A. et al. Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J. Biol. Chem. 271, 21 –24 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Reinhold, M.I., Lindberg, F.P., Kersh, G.J., Allen, P.M. & Brown, E.J. Costimulation of T cell activation by integrin-associated protein (CD47) is an adhesion-dependent CD28-independent signaling pathway. J. Exp. Med. 185, 1– 11 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fournier, S., Delespesse, G., Rubio, M., Biron, G. & Sarfati, M. CD23 antigen regulation and signaling in chronic lymphocytic leukemia. J. Clin. Invest. 89 , 1312–1321 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shan, D., Ledbetter, J.A. & Press, O.W. Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies. Blood 91, 1644–1652 (1998).

    CAS  PubMed  Google Scholar 

  28. Ghetie, M-A. et al. Homodimerization of tumor-reactive monoclonal antibodies markedly increases their ability to induce growth arrest or apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA 94, 7509– 7514 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Truman, J-P. et al. HLA class II-mediated death is induced via Fas/Fas ligand interactions in human splenic B lymphocytes. Blood 89, 1996–2007 (1997).

    CAS  PubMed  Google Scholar 

  30. Chaouchi, N., Vazquez, A., Galanaud, P. & Leprince, C. B cell antigen receptor-mediated apoptosis. J. Immunol. 154, 3096–3104 (1995).

    CAS  PubMed  Google Scholar 

  31. Kitada, S. et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: Correlations with in vitro and in vivo chemoresponses. Blood 91, 3379–3389 ( 1998).

    CAS  PubMed  Google Scholar 

  32. McConkey, D.J. et al. Apoptosis sensitivity in chronic lymphocytic leukemia is determined by endogenous endonuclease content and relative expression of Bcl-2 and Bax. J. Immunol. 156, 2624– 2630 (1996).

    CAS  PubMed  Google Scholar 

  33. Hanada, M., Delia, D., Aiello, A., Stadtmauer, E. & Reed, J.C. Bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 82, 1820–1828 (1993).

    CAS  PubMed  Google Scholar 

  34. Thomas, A., et al. Drug-induced apoptosis in B-cell chronic lymphocytic leukemia: Relationship of p53 gene mutation, Bcl-2/Bax proteins in drug resistance. Oncogene 12, 1055–1062 (1996).

    CAS  PubMed  Google Scholar 

  35. Panayiotidis, P., Ganeshaguru, K., Jabbar, S. & Hoffbrand, V. Interleukin-4 inhibits apoptotic cell death and loss of the Bcl-2 protein in B-chronic lymphocytic leukaemia cells in vitro. Br. J. Haematol. 85, 439–445 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  36. Panayiotidis, P., Jones, D., Ganeshaguru, K., Foroni, L. & Hoffbrand, A.V. Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br. J. Haematol. 92, 97– 103 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Romano, M.F. et al. Triggering of CD40 antigen inhibits fludarabine-induced apoptosis in B chronic lymphocytic leukemia cells. Blood 92, 990–995 (1998).

    CAS  PubMed  Google Scholar 

  38. Wang, D., Freeman, G.J., Levine, H., Ritz, J. & Robertson, M.J. Role of the CD40 and CD95 (APO-1/Fas) antigens in the apoptosis of human B-cell malignancies. Br. J. Haematol. 97, 409–417 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  39. Tinhofer, I. et al. Differential sensitivity of CD4+ and CD8+ T lymphocytes to the killing efficacy of Fas (Apo-1/CD95) ligand+ tumor cells in B chronic lymphocytic leukemia. Blood 91, 4273–4281 ( 1998).

    CAS  PubMed  Google Scholar 

  40. Douglas, R.S., Capocasale, R.J., Lamb, R.J., Nowell, P.C. & Moore, J.S. Chronic lymphocytic leukemia B cells are resistant to the apoptotic effects of transforming growth factor-β. Blood 89, 941–947 (1997).

    CAS  PubMed  Google Scholar 

  41. Chandra, J. et al. Protease activation is required for glucocorticoid-induced apoptosis in chronic lymphocytic leukemic lymphocytes. Blood 90, 3673–3681 (1997).

    CAS  PubMed  Google Scholar 

  42. Robertson, L.E. et al. Induction of apoptotic cell death in chronic lymphocytic leukemia by 2-chloro-2'-deoxyadenosine and 9-β-D-arabinosyl-2-fluoroadenine. Blood 81, 143–150 ( 1993).

    CAS  PubMed  Google Scholar 

  43. Consoli, U. et al. Differential induction of apoptosis by fludarabine monophosphate in leukemic B and normal T cells in chronic lymphocytic leukemia. Blood 91, 1742–1748 ( 1998).

    CAS  PubMed  Google Scholar 

  44. Bellosillo, B. et al. Aspirin and salicylate induce apoptosis and activation of caspases in B-cell chronic lymphocytic leukemia cells. Blood 92, 1406–1414 (1998).

    CAS  PubMed  Google Scholar 

  45. Byrd, J.C. et al. Flavopiridol induces apoptosis in chronic lymphocytic leukemia cells via activation of caspase-3 without evidence of Bcl-2 modulation or dependence on functional p53. Blood 92, 3804–3816 (1998).

    CAS  PubMed  Google Scholar 

  46. Bellosillo, B., Dalmau, M., Colomer, D. & Gil, J. Involvement of CED-3/ICE proteases in the apoptosis of B-chronic lymphocytic leukemia cells. Blood 89, 3378–3384 ( 1997).

    CAS  PubMed  Google Scholar 

  47. Susin, S.A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441– 446 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Zamzami, N., Brenner, C., Marzo, I., Susin, S.A. & Kroemer, G. Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene 16, 2265– 2282 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Mower, D.A. Jr. et al. Decreased membrane phospholipid packing and decreased cell size precede DNA cleavage in mature mouse B cell apoptosis. J. Immunol. 152, 4832–4842 (1994).

    CAS  PubMed  Google Scholar 

  50. Zhuang, J. et al. Dissociation of phagocyte recognition of cells undergoing apoptosis from other features of the apoptotic program. J. Biol. Chem. 273, 15628–15632 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  51. Albert, M.L. et al. Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. 188, 1359–1368 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Savill, J. Phagocytic docking without shocking. Nature 392, 442–443 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Guo, K. et al. Apoptosis-associated gene expression in the corpus luteum of the rat. Biol. Reprod. 58, 739– 746 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Cantwell, M.J., Sharma, S., Friedmann, T. & Kipps, T.J. Adenovirus vector infection of chronic lymphocytic leukemia B cells. Blood 88, 4676–4683 ( 1996).

    CAS  PubMed  Google Scholar 

  55. Fuente, Mt., Casanova, B., Garcia, G.M., Silva, A. & Garcia, P.A. Fibronectin interaction with α4β1 integrin prevents apoptosis in B-cell chronic lymphocytic leukemia: correlation with Bcl-2 and Bax. Leukemia 13, 266– 274 (1999).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Department of Pathology (Notre-Dame Hospital) for the electron microscopy data. This work was supported by MRC grant numbers MT 13311 and MT 14432 and Fondation Medic "Fulpius".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sarfati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mateo, V., Lagneaux, L., Bron, D. et al. CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia. Nat Med 5, 1277–1284 (1999). https://doi.org/10.1038/15233

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing