Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Drug target validation and identification of secondary drug target effects using DNA microarrays

Abstract

We describe here a method for drug target validation and identification of secondary drug target effects based on genome-wide gene expression patterns. The method is demonstrated by several experiments, including treatment of yeast mutant strains defective in calcineurin, immunophilins or other genes with the immunosuppressants cyclosporin A or FK506. Presence or absence of the characteristic drug 'signature' pattern of altered gene expression in drug-treated cells with a mutation in the gene encoding a putative target established whether that target was required to generate the drug signature. Drug dependent effects were seen in 'targetless' cells, showing that FK506 affects additional pathways independent of calcineurin and the immunophilins. The described method permits the direct confirmation of drug targets and recognition of drug-dependent changes in gene expression that are modulated through pathways distinct from the drug's intended target. Such a method may prove useful in improving the efficiency of drug development programs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of antagonism of the calcineurin signaling pathway mediated by FK506 and cyclosporin A (CsA).
Figure 2: Expression profiles from FK506-treated wild-type (wt) cells and a calcineurin-disruption mutant strain share a genome-wide correlation.
Figure 3: Expression profiles from a his3 mutant strain and wild-type (wt) cells treated with 3-AT share a genome-wide correlation.
Figure 4: Treatment of the his3 mutant strain with 3-AT shows nearly complete loss of 3-AT signature.
Figure 5: Response of FK506 and CsA signature genes in strains with deletions in different genes.
Figure 6: Response of FK506 signature genes in strains with deletions in different genes.

Similar content being viewed by others

References

  1. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  2. Schena, M. et al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA 93, 10614–10619 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shalon, D., Smith, S.J. & Brown, P.O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6, 639–645 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  4. Lockhart, D.J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675– 1680 (1996).

    Article  CAS  Google Scholar 

  5. DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet. 14, 457– 460 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Heller, R.A. et al. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc. Natl. Acad. Sci. USA 94, 2150–2155 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680– 686 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Lashkari, D.A. et al. Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl. Acad. Sci. USA 94, 13057–13062 (1997).

    Article  CAS  Google Scholar 

  9. Wodicka, L., Dong H., Mittman, M, Ho, M.-H. & Lockhart, D.J. . Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol. 15, 1359– 1367 (1997).

    Article  CAS  Google Scholar 

  10. Cho, R.J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Gray, N.S. et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281, 533–538 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Cardenas, M.E., Lorenz, M., Hemenway, C. & Heitman, J. Yeast as model T cells. Perspect. Drug Discovery Design 2, 103–126 (1994).

    Article  CAS  Google Scholar 

  13. Klee, C.B., Ren, H. & Wang, X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J. Biol. Chem. 273, 13367– 13370 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Tanida, I., Hasegawa, A., Iida, H., Ohya, Y. & Anraku, Y. Cooperation of calcineurin and vacuolar H(+)-ATPase in intracellular Ca2+ homeostasis of yeast cells. J. Biol. Chem. 270, 10113–10119 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Moser, M.J., Geiser, J.R. & Davis, T.N. Ca2+-calmodulin promotes survival of pheromone-induced growth arrest by activation of calcineurin and Ca2+-calmodulin-dependent protein kinase. Mol. Cell. Biol. 16, 4824– 4831 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mizunuma, M., Hirata, D., Miyahara, K., Tsuchiya, E. & Miyakawa, T. Role of calcineurin and Mpk1 in regulating the onset of mitosis in budding yeast. Nature 392, 303–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Yazdanbakhsh, K., Choi, J.W., Li, Y., Lau, L.F. & Choi, Y. Cyclosporin A blocks apoptosis by inhibiting the DNA binding activity of the transcription factor Nur77. Proc. Natl. Acad. Sci. USA 92, 437–441 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Molkentin, J.D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215– 228 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mansuy, I.M., Mayford, M., Jacob, B., Kandel, E.R. & Bach, M.E. Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92, 39–49 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Schreiber, S.L. & Crabtree, G.R. The mechanism of action of cyclosporin A and FK506. Immunol. Today 13, 136–142 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Cyert, M.S., Kunisawa, R., Kaim, D. & Thorner, J. Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase. Proc. Natl. Acad. Sci. USA 88, 7376–7380 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jones, E.W. & Fink, G.R. in The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression (eds. Strathern, J.N., Jones, E.W. & Broach, J.R.) 181–299 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1982).

    Google Scholar 

  23. Hinnebusch, A. Translational regulation of yeast GCN4. J. Biol. Chem. 272, 21661–21664 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Hinnebusch, A.G. in The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression. (eds. Jones, E.W., Pringle, J.R. & Broach, J.R.) 319–414 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1992).

    Google Scholar 

  25. Heitman, J. et al. The immunosuppressant FK506 inhibits amino acid import in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 5010–5019 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balzi, E. & Goffeau, A. Yeast multidrug resistance: the PDR network. J. Bioenerg. Biomembr. 27, 71–76 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Egner, R., Rosenthal, F.E., Kralli, A., Sanglard, D. & Kuchler, K. Genetic separation of FK506 susceptibility and drug transport in the yeast Pdr5 ATP-binding cassette multidrug resistance transporter Mol. Biol. Cell 9, 523– 543 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barkal, N. & Leiber, S. Robustness in simple biochemical networks. Nature 387, 913– 917 (1997).

    Article  Google Scholar 

  29. Schiestl, R.H., Manivasakam, P, Woods, R.A. & Gietz, R.D. Introducing DNA into yeast by transformation. Methods: A companion to Methods in Enzymology 5, 79–85 (1993).

    Article  CAS  Google Scholar 

  30. Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793– 1808 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Garrett-Engele, P., Moilanen, B. & Cyert, M.S . Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar H(+)-ATPase. Mol. Cell. Biol. 15, 4103–4114 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ausubel, F.M. et al. in Current Protocols in Molecular Biology 13.12.1 –13.12.5 (eds. Ausubel, F.M., et al.)(John Wiley & Sons, New York, 1993).

    Google Scholar 

  33. Bulmer, M.G. in Principles of Statistics 224–225 (Dover Publications, New York, 1979).

    Google Scholar 

  34. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designated for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Brachmann, C.B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115– 132 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all the members of Rosetta for their contributions to this work. We thank P. Linsley, D. Shoemaker and A. Murray for critical reading of the manuscript, and M. Cyert for providing yeast strains. Work done at Stanford was supported in part by the Howard Hughes Medical Institute, and by a grant to P.O.B from the NHGRI. P.O.B is an assistant investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Friend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marton, M., DeRisi, J., Bennett, H. et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med 4, 1293–1301 (1998). https://doi.org/10.1038/3282

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing