Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Corrective gene transfer in the human skin disorder lamellar ichthyosis

Abstract

Lamellar ichthyosis (LI) is a disfiguring skin disease characterized by abnormal epidermal differentiation and defective cutaneous barrier function1,2. LI has been associated with loss of keratinocyte transglutaminase 1 (Tgase1)3,4, an enzyme believed necessary for normal formation of the cornified epidermal barrier. Using LI as a prototype for therapeutic cutaneous gene delivery, we have used the human skin/immunodeficient mouse xenograft model to correct the molecular, histologic and functional abnormalities of LI patient skin in vivo. We have used Tgase1–deficient primary keratinocytes from LI patients combined with high–efficiency transfer of functional Tgase1 to regenerate engineered human LI epidermis on immunodeficient mice. Engineered LI epidermis displayed normal Tgase1 expression in vivo, unlike unengineered LI epidermis where Tgase1 was absent. Epidermal architecture was also normalized by Tgase1 restoration, as was expression of the epidermal differentiation marker filaggrin. Engineered LI skin demonstrated restoration of cutaneous barrier function measures to levels seen in epidermis regenerated by keratinocytes from patients with normal skin, indicating functional correction in vivo of the proposed primary pathophysiologic defect in LI. These results confirm a major role for Tgase1 in epidermal differentiation and demonstrate a potential future approach to therapeutic gene delivery in human skin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Williams, M.L. & Elias, P.M. Genetically transmitted, generalized disorders of cornification. Dermatol. Clin. 5, 155–178 (1987).

    Article  CAS  Google Scholar 

  2. Bale, S.J. & Doyle, S.Z. The genetics of ichthyosis: A primer for epidemiologists. J. Invest. Dermatol. 102, 49S–50S (1994).

    Article  CAS  Google Scholar 

  3. Huber, M. et al. Mutations of keratinocyte transglutaminase in lamellar ichthyosis. Science 267, 525–528 (1995).

    Article  CAS  Google Scholar 

  4. Russell, L.J. et al. Mutations in the gene for transglutaminase 1 in autosomal recessive lamellar ichthyosis. Nature Genet. 9, 279–283 (1995).

    Article  CAS  Google Scholar 

  5. Khavari, P.A. et al. BRG1 contains a conserved domain of the SWI2/SNF2 gene family necessary for normal mitotic growth and transcription. Nature 366, 170–174 (1993).

    Article  CAS  Google Scholar 

  6. Gibson, D.F., Ratnam, A.V. & Bikle, D.D. Evidence for separate control mechanisms at the message, protein, and enzyme activation levels for transglutaminase during calcium-induced differentiation of normal and transformed human keratinocytes. J. Invest. Dermatol. 106, 154–161 (1996).

    Article  CAS  Google Scholar 

  7. Gallico, G.G. et al. Permanent coverage of large burn wounds with autologous cultured human epithelium. N. Engl. J. Med. 311, 448 (1984).

    Article  Google Scholar 

  8. Briggaman, R.A. Localization of the defect in skin diseases analyzed in the human skin graft-nude mouse model. Curr. Probl. Dermatol. 10, 115 (1980).

    Article  CAS  Google Scholar 

  9. Kim, Y. et al. Recessive dystrophic epidermolysis bullosa phenotype is preserved in xenografts using SCID mice: Development of an experimental in vivo model. J. Invest. Dermatol. 98, 191–195 (1992).

    Article  CAS  Google Scholar 

  10. Medalie, D.A. et al. Evaluation of human skin reconstituted from composite grafts of cultured keratinocytes and human acellular dermis transplanted to athymic mice. J. Invest. Dermatol. 107, 121–127 (1996).

    Article  CAS  Google Scholar 

  11. Fenjves, E.S., Yao, S.-N., Kurachi, K. & Taichman, L.B. Loss of expression of a retrovirus-transduced gene in human keratinocytes. J. Invest. Dermatol. 106, 576–578 (1996).

    Article  CAS  Google Scholar 

  12. Gerrard, A.J., Hudson, D.L., Brownlee, G.G. & Watt, F.M. Towards gene therapy for haemophilia B using primary human keratinocytes. Nature Genet. 3, 180–183 (1993).

    Article  CAS  Google Scholar 

  13. Dale, B.A., Gown, A.M., Fleckman, M.D., Kimball, J.R. & Resing, K.A. Characterization of two monoclonal antibodies to human epidermal keratohyalin: Reactivity with filaggrin and related proteins. J. Invest. Dermatol. 88, 307–313 (1987).

    Article  Google Scholar 

  14. Lavrijsen, A.P. et al. Barrier function parameters in various keratinization disorders: Transepidermal water loss and vascular response to hexyl nicotinate. Br. J. Dermatol. 129, 547–553 (1993).

    Article  CAS  Google Scholar 

  15. Mancini, A.J., Sookdeo-Drost, S., Madison, K.C., Smoller, B.R. & Lane, A.T. Semipermeable dressings improve epidermal barrier function in premature infants. Pediatr. Res. 36, 306–314 (1994).

    Article  CAS  Google Scholar 

  16. Garlick, J.A., Katz, A.B., Fenjves, E.S. & Taichman, L.B. Retrovirus-mediated transduction of cultured epidermal keratinocytes. J. Invest. Dermatol. 97, 824–829 (1991).

    Article  CAS  Google Scholar 

  17. Kinsella, T.M. & Nolan, G.P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413 (1996).

    Article  CAS  Google Scholar 

  18. Roop, D. Defects in the barrier. Science 267, 474–475 (1995).

    Article  CAS  Google Scholar 

  19. Ottey, K.A., Wood, L.C., Grunfeld, C., Elias, P.M. & Feingold, K.R. Cutaneous permeability barrier disruption increases fatty acid synthetic enzyme activity in the epidermis of hairless mice. J. Invest. Dermatol. 104, 401 (1995).

    Article  CAS  Google Scholar 

  20. Taichman, L.B. Epithelial gene therapy. in The Keratinocyte Handbook. (eds. Leigh, I., Lane, B. & Watt, F.) 543–551 (Cambridge Univ. Press, 1994).

    Google Scholar 

  21. Greenhalgh, D.A., Rothnagel, J.A. & Roop, D.R. An attractive target tissue for gene therapy. J. Invest. Dermatol. 103S, 63S–69S (1994).

    Article  Google Scholar 

  22. Vogel, J.C. Keratinocyte gene therapy. Arch. Dermatol. 129, 1478–1483 (1993).

    Article  CAS  Google Scholar 

  23. Fenjves, E.S. Approaches to gene transfer in keratinocytes. J. Invest. Dermatol. 103, 70S–75S (1994).

    Article  CAS  Google Scholar 

  24. Khavari, P.A. & Krueger, G.G. Cutaneous gene therapy. Dermatol. Clin. (in the press).

  25. Rheinwald, J.G. & Green, H. Serial cultivation of strains of human epidermal keratinocytes. Cell, 6, 331 (1975).

    Article  CAS  Google Scholar 

  26. Thacher, S.M. & Rice, R.H. Keratinocyte-specific transglutaminase of cultured human epidermal cells: Relation to cross-linked envelope formation and terminal differentiation. Cell 40, 685–695 (1985).

    Article  CAS  Google Scholar 

  27. Ta, B.M., Gallagher, G.T., Chakravarty, R. & Rice, R.H. Keratinocyte transglutaminase in human skin and oral mucosa: Cytoplasmic localization and uncoupling of differentiation markers. J. Cell Sci. 95, 631 (1990).

    CAS  PubMed  Google Scholar 

  28. Murphy, G.F., Flynn, T.C., Rice, R.H. & Pinkus, G.S. Involucrin expression in normal and neoplastic human skin: A marker for keratinocyte differentiation. J. Invest. Dermatol. 82, 453–457 (1984).

    Article  CAS  Google Scholar 

  29. Ivanyi, D. et al. New monoclonal antibodies recognizing epidermal differentiation-associated keratins in formalin-fixed, paraffin embedded tissue: Keratin 10 expression in carcinoma of the vulva. J. Pathol. 159, 7–12 (1989).

    Article  CAS  Google Scholar 

  30. Roop, D.R. et al. Synthetic peptides corresponding to keratin subunits elicit highly specific antibodies. J. Biol. Chem. 259, 8037–8040 (1984).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choate, K., Medalie, D., Morgan, J. et al. Corrective gene transfer in the human skin disorder lamellar ichthyosis. Nat Med 2, 1263–1267 (1996). https://doi.org/10.1038/nm1196-1263

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1196-1263

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing