Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Radiotherapy for genes that cause cancer

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Iliakis, G., Pantelias, G. & Kurtzman, S. Mechanism of radiosensitization by halogenated pyrimidines: Effect of BrdU on cell killing and interphase chromosome breakage in radiation-sensitive cells. Radiat. Res. 125, 56–64 (1991).

    Article  CAS  Google Scholar 

  2. Culver, K.W., Vickers, T.M., Lamsam, J.L., Walling, H.W. & Seregina, T. Gene therapy for solid tumours. Br. med. Bull. 51, 192–204 (1995).

    Article  CAS  Google Scholar 

  3. Kim, J.H., Kim, S.H., Brown, S.L. & Freytag, S.O. Selective enhancement of an antiviral agent of the radiation-induced cell killing of human glioma cells transduced with HSV-tk gene. Cancer Res. 54, 6053–6056 (1994).

    CAS  PubMed  Google Scholar 

  4. Fitzgerald, T.J. et al. Activated human N-ras oncogene enhances X-irradiation repair of mammalian cells in vitro less effectively at low dose rate. Am J. clin. Oncol. 8, 517–522 (1985).

    Article  CAS  Google Scholar 

  5. McKenna, W.G. et al. Synergistic effect of the v-myc oncogene with H-ras on radioresistance. Cancer Res. 50, 97–102 (1990).

    CAS  PubMed  Google Scholar 

  6. Kasid, U. et al. Effect of antlsense c-raf-1 on tumorigenicity and radiation sensitivity of a human squamous carcinoma. Science 243, 1354–1356 (1989).

    Article  CAS  Google Scholar 

  7. Markiewicz, D.A., McKenna, W.G., Flick, M.B., Maity, A. & Muschel, R.J. The effects of radiation on the expression of a newly cloned and characterized rat cyclin B mRNA. Int. J. Radiat. Oncol. Biol. Phys. 28, 135–144 (1994).

    Article  CAS  Google Scholar 

  8. Chen, C.H., Zhang, J. & Ling, C.C. Transfected c-myc and c-Ha-ras modulate radiation-induced apoptosis in rat embryo cells. Radiat. Res. 139, 307–315 (1994).

    Article  CAS  Google Scholar 

  9. Milas, L., Stephens, L.C. & Mcyn, R.E. Relation of apoptosis to cancer therapy. In Vivo 8, 665–673 (1994).

    CAS  PubMed  Google Scholar 

  10. Kastan, M.B., Canman, C.E. & Leonard, C.J. p53, cell cycle control and apoptosis: Implications for cancer. Cancer Metastasis Rev. 14, 3–15 (1995).

    Article  CAS  Google Scholar 

  11. Lane, D.P. et al. On the regulation of the p53 tumour suppressor, and its role in the Cellular response to DNA damage. Phil. Trans. R. Soc. Land. B. Biol. Sci. 347, 83–87 (1995).

    Article  CAS  Google Scholar 

  12. Lowe, S.W. et al. p53 status and the efficacy of cancer therapy in vivo. Science 266, 807–810 (1994).

    Article  CAS  Google Scholar 

  13. Tanaka, N. et al. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 77, 829–839 (1994).

    Article  CAS  Google Scholar 

  14. Tamura, T. et al. An IRF-1-dependent pathway of DNA damage-induced apoptosis in mitogen-activated T lymphocytes. Nature 376, 596–599 (1995).

    Article  CAS  Google Scholar 

  15. Miyashita, T. et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9, 1799–1805 (1994).

    CAS  PubMed  Google Scholar 

  16. Datta, R. et al. Overexpression of Bcl-XL by cytotoxic drug exposure confers resistance to ionizing radiation-induced internucleosomal DNA fragmentation. Cell Growth Differ. 6, 363–370 (1995).

    CAS  PubMed  Google Scholar 

  17. Hallahan, D.E., Haimovitz, F.A., Kufe, D.W., Fuks, Z. & Weichselbaum, R.R. The role of cytokines in radiation oncology. in Important Advances in Oncology (eds de Vita, V.T., Hellman, S. & Rosenberg, S.) 71–80 (Lippincott, Philadelphia, 1993).

    Google Scholar 

  18. McBride, W.H. et al. Modification of tumor microenvironment by cytokine gene transfer. Acta Oncol. 34, 447–451 (1995).

    Article  CAS  Google Scholar 

  19. Jung, M. et al. Fibroblast growth factor-4 enhanced G2 arrest and Cell survival following ionizing radiation. Cancer Res. 54, 5194–5197 (1994).

    CAS  PubMed  Google Scholar 

  20. Stone, H.B., Brown, J.M., Phillips, T.L. & Sutherland, R.M. Oxygen in human tumors: Correlations between methods of measurement and response to therapy. Summary of a workr shop held 19–20 November 1992, at the National Cancer Institute, Bethesda, Maryland. Radiat. Res. 136, 422–434 (1993).

    Article  CAS  Google Scholar 

  21. Milas, L., Wike, J., Hunter, N., Volpe, J. & Basic, I. Macrophage content of murine sarcomas and carcinomas: Associations with tumor growth parameters and tumor radiocurability. Cancer Res. 47, 1069–1075 (1987).

    CAS  PubMed  Google Scholar 

  22. Hallahan, D.E. et al. Spatial and temporal control of gene therapy using ionizing radiation. Nature Med. 1, 786–791 (1995).

    Article  CAS  Google Scholar 

  23. Chu, T.H. & Dornburg, R. Retroviral vector particles displaying the antigen-binding site of an antibody enable cell-type-specific gene transfer. J. Virol. 69, 2659–2663 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Russell, S.J., Hawkins, R.E. & Winter, G. Retroviral vectors displaying functional antibody fragments. Nucleic Acids Res. 21, 1081–1085 (1993).

    Article  CAS  Google Scholar 

  25. Vile, R.G. Tumor-specific gene expression. Semin. Cancer Biol. 5, 429–436 (1994).

    CAS  PubMed  Google Scholar 

  26. Ausserer, W.A., Bourrat, F.B., Green, C.J., Laderoute, K.R. & Sutherland, R.M. Regulation of c-jun expression during hypoxic and low-glucose stress. Molec. Cell. Biol. 14, 5032–5042 (1994).

    Article  CAS  Google Scholar 

  27. Weichselbaum, R.R. et al. Gene therapy targeted by radiation preferentially radiosensitizes tumor cells. Cancer Res. 54, 4266–4269 (1994).

    CAS  PubMed  Google Scholar 

  28. Boothman, D.A., Lee, I.W. & Sahijdak, W.M. Isolation of an X-ray-responsive element in the promoter region of tissue-type plasminogen activator: Potential uses of X-ray-responsive elements for gene therapy. Radiat. Res. 138, S68–71 (1994).

    Article  CAS  Google Scholar 

  29. Cheng, X. & Iliakis, G. Effect of ionizing radiation on the expression of chloramphenicol acetyltransferase gene under the control of commonly used constitutive or inducible promoters. Int. J. Radiat. Biol. 67, 261–267 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mcbride, W., Dougherty, G. Radiotherapy for genes that cause cancer. Nat Med 1, 1215–1217 (1995). https://doi.org/10.1038/nm1195-1215

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1195-1215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing