Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres

Abstract

Clinical trials are under way using fetal cells to repair damaged neuronal circuitry. However, little is known about how transplanted immature neurons can grow anatomically correct connections in the adult central nervous system (CNS). We transplanted embryonic porcine neural cells in vivo into adult rat brains with neuronal and axonal loss typical of Parkinson's or Huntington's disease. Using complementary species-specific cellular markers, we found donor axons and CD44+ astroglial fibres in host white matter tracts up to 8 mm from CNS transplant sites, although only donor axons were capable of reaching correct gray matter target regions. This work demonstrates that adult host brain can orient growth of transplanted neurons and that there are differences in transplant donor glial and axonal growth patterns in cellular repair of the mature CNS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Freed, C. et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 24 months after transplantation for Parkinson's disease. New Engl. J. Med. 327, 1549–1555 (1992).

    Article  CAS  Google Scholar 

  2. Lindvall, O. et al. Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson's disease. Ann. Neurol. 35, 172–180 (1994).

    Article  CAS  Google Scholar 

  3. Kordower, J.H. et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. New Engl. J. Med. 332, 1118–1124 (1995).

    Article  CAS  Google Scholar 

  4. Galpern, W.R. et al. Xenotransplantation of fetal porcine ventral mesencephalon results in functional recovery in a rat model of Parkinson's disease. J. Neurosurg. Proc. AANS, 38 (1995).

  5. Björklund, A., Brundin, P. & Isacson, O. Neuronal replacement by intracerebral neural implants in animal models of neurodegenerative disease. Adv. Neurol. 47, 455–492 (1988).

    PubMed  Google Scholar 

  6. Keynes, R.J. & Cook, G.M.W. Repellent cues in axon guidance. Curr. Opin. Neurobiol. 2, 55–59 (1992).

    Article  CAS  Google Scholar 

  7. Patterson, P.H. On the importance of being inhibited, or say no to growth cones. Neuron 1, 263–267 (1988).

    Article  CAS  Google Scholar 

  8. Schwab, M.E. & Caroni, P. Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J. Neurosci. 8, 2381–2393 (1988).

    Article  CAS  Google Scholar 

  9. Wictorin, K., Brundin, P., Gustavii, B., Lindvall, O. & Björklund, A. Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts. Nature 347, 556–558 (1990).

    Article  CAS  Google Scholar 

  10. Wictorin, K., Brundin, P., Sauer, H., Lindvall, O. & Björklund, A. Long distance directed axonal growth from human dopaminergic mesencephalic neuroblasts implanted along the nigrostriatal pathway in 6-hydroxydopamine lesioned adult rats. J. comp. Neurol. 323, 475–494 (1992).

    Article  CAS  Google Scholar 

  11. Davies, S.J.A., Field, P.M. & Raisman, G. Long fibre growth by axons of embryonic mouse hippocampal neurons microtransplanted into the adult rat fimbria. Eur. J. Neurosci. 5, 95–106 (1993).

    Article  CAS  Google Scholar 

  12. Davies, S.J.A., Field, P.M. & Raisman, G. Long interfascicular axon growth from embryonic neurons transplanted into adult myelinated tracts. J. Neurosci. 14, 1596–1612 (1994).

    Article  CAS  Google Scholar 

  13. Pakzaban, P., Deacon, T.W., Burns, L.H. & Isacson, O. Increased proportion of acetylcholinesterase-rich zones and improved morphological integration in host striatum of fetal grafts derived from the lateral but not the medial ganglionic eminence. Exp. Brain Res. 97, 13–22 (1993).

    Article  CAS  Google Scholar 

  14. Deacon, T.W., Pakzaban, P. & Isacson, O. The lateral ganglionic eminence is the source of striatal phenotypes: Neural transplantation and developmental evidence. Brain Res. 668, 211–219 (1994).

    Article  Google Scholar 

  15. Deacon, T.W., Pakzaban, P., Burns, L.H., Dinsmore, J. & Isacson, O. Cytoarchitectonic development and axon-glia relationships in homotopic porcine striatal xenografts in rats. Exp. Neurol. 130, 151–167 (1994).

    Article  CAS  Google Scholar 

  16. Aguayo, A.J., Björklund, A., Stenevi, U. & Carlstedt, T. Fetal mesencephalic neurons survive and extend long axons across PNS grafts inserted into the adult striatum. Neurosci. Lett. 45, 53–58 (1984).

    Article  CAS  Google Scholar 

  17. Brundin, P., Isacson, O. & Björklund, A. Monitoring of cell viability of embryonic CNS tissue as a criterion for intracerebral graft survival. Brain Res. 331, 251–259 (1985).

    Article  CAS  Google Scholar 

  18. Zhou, H. & Lund, R.D. Effects of the age of donor or host tissue on astrocyte migration from intracerebral xenografts of corpus callosum. Exp. Neurol. 122, 155–164 (1993).

    Article  CAS  Google Scholar 

  19. Snow, M.H.L. & Tarn, P.P.L. Timing in embryological development. Nature 286, 107 (1980).

    Article  CAS  Google Scholar 

  20. Sacher, G.A. & Staffeldt, E.F. Relation of gestation time to brain weight in placental mammals. Am. Natur. 108, 593–616 (1974).

    Article  Google Scholar 

  21. Dickerson, J.W.T. & Dobbing, J. Prenatal and postnatal growth and development of the central nervous system of the pig. Proc. R. Sac. Br. 166, 384–395 (1967).

    Article  CAS  Google Scholar 

  22. Forssman, J., Thesis. Lund Univ. (Gustav Fischer Verlag, Jena, 1898).

  23. Hamburger, V. The development and innervation of transplanted limb primordia of chick embryos. J. exp. Zool. 80, 147–189 (1939).

    Article  Google Scholar 

  24. Sperry, R.W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. natn. Acaa. Sci. U.S.A. 50, 703–710 (1963).

    Article  CAS  Google Scholar 

  25. Goodman, C.S. & Shatz, C.J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 10, 77–98 (1993).

    Article  Google Scholar 

  26. Bastiani, M.J., Harrelson, A.L., Snow, P.M. & Goodman, C.S. Expression of fasciclin 1 and II glycoproteins on subsets of axon pathways during neuronal development in the grasshopper. Cell 48, 745–755 (1987).

    Article  CAS  Google Scholar 

  27. Dodd, J., Morton, S.B., Karagogeos, D., Yamamoto, M. & Jessell, T.M. Spatial regulation of axonal glycoprotein expression on subsets of embryonic spinal neurons. Neuron 1, 105–116 (1988).

    Article  CAS  Google Scholar 

  28. Moretto, G., Xu, R.Y. & Kim, S.U. CD44 expression in human astrocytes and Oligodendrocytes in culture. J. Neuropath. exp. Neural. 52, 419–423 (1993).

    Article  CAS  Google Scholar 

  29. Kennedy, T.E., Seraflni, T., de la Torre, J.R. & Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435 (1994).

    Article  CAS  Google Scholar 

  30. Serafini, T. et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994).

    Article  CAS  Google Scholar 

  31. Matthes, D.J., Sink, H., Kolodkin, A.L. & Goodman, C.S. Semaphorin II can function as a selective inhibitor of specific synaptic arborizations. Cell 81, 631–639 (1995).

    Article  CAS  Google Scholar 

  32. Colamarino, S.A. & Tessier-Lavigne, M. The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell 81, 621–629 (1995).

    Article  CAS  Google Scholar 

  33. Burden-Gulley, S.M., Payne, H.R. & Lemmon, V. Growth cones are actively influenced by substrate-bound adhesion molecules. J. Neurosci 15, 4370–4381 (1995).

    Article  CAS  Google Scholar 

  34. Coon, H.G., Curcio, F., Sakaguchi, K., Brandi, M.L. & Swerdlow, R.D. Cell cultures of neuroblasts from rat olfactory epithelium that show odorant responses. Proc. natn. Acad. Sci. U.S.A. 86, 1703–1707 (1989).

    Article  CAS  Google Scholar 

  35. Asher, R. & Bignami, A. Hyaluronate binding and CD44 expression in human glioblastoma cells and astrocytes. Exp. Cell Res. 203, 80–90 (1992).

    Article  CAS  Google Scholar 

  36. Girgrah, N. et al. Localization of the CD44 glycoprotein to fibrous astrocytes in normal white matter and to reactive astrocytes in active lesions in multiple sclerosis. J. Neuropath. exp. Neural. 50, 779–792 (1991).

    Article  CAS  Google Scholar 

  37. Girgrah, N., Ackerley, C.A. & Moscarello, M.A. Hyaluronate binding and CD44 expression in human glioblastoma cells and astrocytes: Localization of CD44 (p80) on the external surface of a human astrocytoma cell. Exp. Cell Res. 203, 80–90 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isacson, O., Deacon, T., Pakzaban, P. et al. Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nat Med 1, 1189–1194 (1995). https://doi.org/10.1038/nm1195-1189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1195-1189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing