Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Re-engineered CD40 receptor enables potent pharmacological activation of dendritic-cell cancer vaccines in vivo

Abstract

Modest clinical outcomes of dendritic-cell (DC) vaccine trials call for the refinement of DC vaccine design. Although many potential antigens have been identified, development of methods to enhance antigen presentation by DCs has lagged. We have engineered a potent, drug-inducible CD40 (iCD40) receptor that permits temporally controlled, lymphoid-localized, DC-specific activation. iCD40 is comprised of a membrane-localized cytoplasmic domain of CD40 fused to drug-binding domains. This allows it to respond to a lipid-permeable, high-affinity dimerizer drug while circumventing ectodomain-dependent negative-feedback mechanisms. These modifications permit prolonged activation of iCD40-expressing DCs in vivo, resulting in more potent CD8+ T-cell effector responses, including the eradication of previously established solid tumors, relative to activation of DCs ex vivo (P < 0.01), typical of most clinical DC protocols. In addition, iCD40-mediated DC activation exceeded that achieved by stimulating the full-length, endogenous CD40 receptor both in vitro and in vivo. Because iCD40 is insulated from the extracellular environment and can be activated within the context of an immunological synapse, iCD40-expressing DCs have a prolonged lifespan and should lead to more potent vaccines, perhaps even in immune-compromised patients.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Engineering an insulated, CID-inducible CD40 receptor.
Figure 2: Activation of iCD40 initiates potent, durable NF-κB.
Figure 3: iCD40-mediated activation of DC lines in vitro and in vivo.
Figure 4: Drug-dependent activation of iCD40-expressing primary BMDCs in vitro and in vivo.
Figure 5: iCD40, but not full-length CD40, augments the immunogenicity of DNA-based vaccines independent of CD4+ T cells.
Figure 6: iCD40 enhances the efficacy of DC-based tumor vaccines and the potency of DC-mediated tumor immunosurveillance.

References

  1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Science 392, 245–252 (1998).

    CAS  Google Scholar 

  2. Reis e Sousa, C. Dendritic cells as sensors of infection. Immunity 14, 495–498 (2001).

    Article  CAS  Google Scholar 

  3. Lanzavecchia, A. & Sallusto, F. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 290, 92–97 (2000).

    Article  CAS  Google Scholar 

  4. Nestle, F.O., Banchereau, J. & Hart, D. Dendritic cells: on the move from bench to bedside. Nat. Med. 7, 761–765 (2001).

    Article  CAS  Google Scholar 

  5. Ridgway, D. The first 1000 dendritic cell vaccinees. Cancer Invest. 21, 873–876 (2003).

    Article  Google Scholar 

  6. Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming of Th1, Th2, and nonpolarized T cells. Nat. Immunol. 1, 311–316 (2000).

    Article  CAS  Google Scholar 

  7. Hermans, I., Ritchie, D., Yang, J., Roberts, J. & Ronchese, F. CD8 T cell-dependent elimination of dendritic cells in vivo limits the induction of antitumor immunity. J. Immunol. 164, 3095–3101 (2000).

    Article  CAS  Google Scholar 

  8. Ridge, J.P., Rosa, F.D. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    Article  CAS  Google Scholar 

  9. Schoenberger, S.P., Toes, R.E.M., Voort, E.I.H.v.d., Offringa, R. & Melief, C.J.M. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393, 480–483 (1998).

    Article  CAS  Google Scholar 

  10. Bennett, S.R.M. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signaling. Nature 393, 478–480 (1998).

    Article  CAS  Google Scholar 

  11. Grewal, I.S. & Flavell, R.A. CD40 and CD154 in cell-mediated immunity. Ann. Rev. Immunol. 16, 111–135 (1998).

    Article  CAS  Google Scholar 

  12. Albert, M.L., Jegathesan, M. & Darnell, R.B. Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nat. Immunol. 2, 1010–1017 (2001).

    Article  CAS  Google Scholar 

  13. Diehl, L. et al. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocytes tolerance and augments anti-tumor vaccine efficacy. Nat. Med. 5, 774–779 (1999).

    Article  CAS  Google Scholar 

  14. Vonderheide, R.H. et al. Phase I study of recombinant human CD40 ligand in cancer patient. J. Clin. Oncol. 19, 3280–3287 (2001).

    Article  CAS  Google Scholar 

  15. Mazouz, N. et al. CD40 triggering increases the efficiency of dendritic cells for antitumoral immunization. Cancer Immun. 2, 2–15 (2002).

    PubMed  Google Scholar 

  16. Kikuchi, T., Moore, M.A.S. & Crystal, R.G. Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors. Blood 96, 91–99 (2000).

    CAS  PubMed  Google Scholar 

  17. Andre, P. et al. CD40L stabilizes arterial thrombi by a β3 integrin-dependent mechanism. Nat. Med. 8, 247–252 (2002).

    Article  CAS  Google Scholar 

  18. Mach, F., Schonbeck, U., Sukhova, G.K., Atkinson, E. & Libby, P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394, 200–203 (1998).

    Article  CAS  Google Scholar 

  19. Garlichs, C.D. et al. Upregulation of CD40-CD40 ligand (CD154) in patients with acute cerebral ischemia. Stroke 34, 1412–1418 (2003).

    Article  CAS  Google Scholar 

  20. Mauri, C., Mars, L.T. & Londei, M. Therapeutic activity of agonistic monoclonal antibodies against CD40 in a chronic autoimmune inflammatory process. Nat. Med. 6, 673–679 (2000).

    Article  CAS  Google Scholar 

  21. Contin, C. et al. Membrane-anchored CD40 is processed by the tumor necrosis factor-alpha-converting enzyme. Implications for CD40 signaling. J. Biol. Chem. 278, 32801–32809 (2003).

    Article  CAS  Google Scholar 

  22. Tone, M., Tone, Y., Fairchild, P.J., Wykes, M. & Waldman, H. Regulation of CD40 function by its isoforms generated through alternative splicing. Proc. Natl. Acad. Sci. USA 98, 1751–1756 (2001).

    Article  CAS  Google Scholar 

  23. Kaykas, A., Worringer, K. & Sugden, B. CD40 and LMP-1 both signal from lipid rafts but LMP-1 assembles a distinct, more efficient signaling complex. EMBO J. 20, 2641–2654 (2001).

    Article  CAS  Google Scholar 

  24. Pullen, S.S., Dang, T., Crute, J. & Kehry, M.R. CD40 signaling through tumor necrosis factor receptor-associated factors (TRAFs). J. Biol. Chem. 274, 14246–14254 (1999).

    Article  CAS  Google Scholar 

  25. Spencer, D., Wandless, T., Schreiber, S. & Crabtree, G. Controlling signal transduction with synthetic ligands. Science 262, 1019–1024 (1993).

    Article  CAS  Google Scholar 

  26. Clackson, T. et al. Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc. Natl. Acad. Sci. USA 95, 10437–10442 (1998).

    Article  CAS  Google Scholar 

  27. O'Sullivan, B.J. & Thomas, R. CD40 ligation conditions dendritic cell antigen-presenting function through sustained activation of NF-κB. J. Immunol. 168, 5491–5498 (2002).

    Article  CAS  Google Scholar 

  28. Lutz, M. et al. Retroviral immortalization of phagocytic and dendritic cell clones as a tool to investigate functional heterogeneity. J. Immunol. Methods 174, 269–279 (1994).

    Article  CAS  Google Scholar 

  29. Pettit, A. et al. Nuclear localization of RelB is associated with effective antigen-presenting cell function. J. Immunol. 159, 3681–3691 (1997).

    CAS  PubMed  Google Scholar 

  30. Martin, E., O'Sullivan, B., Low, P. & Thomas, R. Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity 18, 155–167 (2003).

    Article  CAS  Google Scholar 

  31. Schulz, O. et al. CD40 triggering of heterodimeric IL-12p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity 13, 453–462 (2000).

    Article  CAS  Google Scholar 

  32. Wong, P. & Pamer, E. Feedback regulation of pathogen-specific T cell priming. Immunity 188, 499–511 (2003).

    Article  Google Scholar 

  33. Coombes, B. & Mahony, J. Dendritic cell discoveries provide new insight into the cellular immunobiology of DNA vaccines. Immunol. Lett. 78, 103–111 (2001).

    Article  CAS  Google Scholar 

  34. Singh, R., Rodgers, J. & Barry, M. The role of T cell antagonism and original antigenic sin in genetic immunization. J. Immunol. 169, 6779–6786 (2002).

    Article  CAS  Google Scholar 

  35. Reis e Sousa, C. et al. Paralysis of dendritic cell IL-12 production by microbial products prevents infection-induced immunopathology. Immunity 11, 637–647 (1999).

    Article  CAS  Google Scholar 

  36. Yang, Y., Huang, C.-T., Huang, X. & Pardoll, D.M. Persistant Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat. Immunol. 5, 508–515 (2004).

    Article  CAS  Google Scholar 

  37. Seddon, B. & Zamoyska, R. Regulation of peripheral T-cell homeostasis by receptor signalling. Curr. Opin. Immunol. 15, 321–324 (2003).

    Article  CAS  Google Scholar 

  38. Mathur, R., Awasthi, A., Wadhone, P., Ramanamurthy, B. & Saha, B. Reciprocal CD40 signals through p38MAPK and ERK-1/2 induce counteracting immune responses. Nat. Med. 10, 540–544 (2004).

    Article  CAS  Google Scholar 

  39. Ahonen, C. et al. Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J. Exp. Med. 199, 775–784 (2004).

    Article  CAS  Google Scholar 

  40. Lindmark, E., Tenno, T. & Siegbahn, A. Role of platelet P-selectin and CD40 ligand in the induction of monocytic tissue factor expression. Arterio. Thrombo. Vasc. Biol. 20, 2322–2327 (2000).

    Article  CAS  Google Scholar 

  41. Melter, M. et al. Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood 96, 3801–3808 (2000).

    CAS  PubMed  Google Scholar 

  42. Lutgens, E. et al. Requirement for CD154 in the progression of atherosclerosis. Nat. Med. 5, 1313–1316 (1999).

    Article  CAS  Google Scholar 

  43. Iuliucci, J. et al. Intravenous safety and pharmacokinetics of a novel dimerizer drug, AP1903, in healthy volunteers. J. Clin. Pharm. 41, 870–879 (2001).

    Article  CAS  Google Scholar 

  44. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Brenner, C. Rooney and D. Lewis for reviewing drafts of this manuscript; K. Freeman for discussions; and E. Nikitina and T-A. Nguyen for technical assistance. This work was supported by a Robert C. and Janice McNair MD/PhD Training Fellowship at Baylor College of Medicine (to B.A.H.) and Department of Defense grant PC010463 (to D.M.S., K.M.S. and B.A.H.) and a Prostate Cancer Research Initiative grant (to D.M.S. and J.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M Spencer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Supportive data for iCD40-mediated activation of DC lines. (PDF 20 kb)

Supplementary Fig. 2

Generation of a stable LLO91–99-expressing A20 tumor cell line. (PDF 16 kb)

Supplementary Fig. 3

The iCD40 activation 'switch' is resistant to type II CD40 isoform regulation. (PDF 36 kb)

Supplementary Methods (PDF 49 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hanks, B., Jiang, J., Singh, R. et al. Re-engineered CD40 receptor enables potent pharmacological activation of dendritic-cell cancer vaccines in vivo. Nat Med 11, 130–137 (2005). https://doi.org/10.1038/nm1183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing