Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry


The origins of autoimmunity in systemic lupus erythematosus (SLE) are thought to involve both genetic and environmental factors. To identify environmental agents that could potentially incite autoimmunity, we have traced the autoantibody response in human SLE back in time, prior to clinical disease onset, and identified the initial autoantigenic epitope for some lupus patients positive for antibodies to 60 kDa Ro. This initial epitope directly cross-reacts with a peptide from the latent viral protein Epstein-Barr virus nuclear antigen-1 (EBNA-1). Animals immunized with either the first epitope of 60 kDa Ro or the cross-reactive EBNA-1 epitope progressively develop autoantibodies binding multiple epitopes of Ro and spliceosomal autoantigens. They eventually acquire clinical symptoms of lupus such as leukopenia, thrombocytopenia and renal dysfunction. These data support the hypothesis that some humoral autoimmunity in human lupus arises through molecular mimicry between EBNA-1 and lupus autoantigens and provide further evidence to suspect an etiologic role for Epstein-Barr virus in SLE.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Serial development of Ro autoantibodies.
Figure 2: Purified Ro169–180 antibodies cross-react with EBNA-1.
Figure 3: Ro peptide–immunized animals develop cross-reactive autoimmunity.
Figure 4: Immunization with the EBNA-158–72 peptide results in human lupus–like autoimmunity.


  1. Arbuckle, M.R. et al. Autoantibodies are present years before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  Google Scholar 

  2. Dale, J.B. & Beachey, E.H. Epitopes of streptococcal M proteins shared with cardiac myosin. J. Exp. Med. 162, 583–591 (1985).

    Article  CAS  Google Scholar 

  3. Olson, J.K., Croxford, J.L., Calenoff, M.A., Dal Canto, M.C. & Miller, S.D. A virus-induced molecular mimicry model of multiple sclerosis. J. Clin. Invest. 108, 311–318 (2001).

    Article  CAS  Google Scholar 

  4. Kirvan, C.A., Swedo, S.E., Heuser, J.S. & Cunningham, M.W. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat. Med. 9, 914–920 (2003).

    Article  CAS  Google Scholar 

  5. Levin, M.C. et al. Autoimmunity due to molecular mimicry as a cause of neurological disease. Nat. Med. 8, 509–513 (2002).

    Article  CAS  Google Scholar 

  6. James, J.A. et al. An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J. Clin. Invest. 100, 3019–3026 (1997).

    Article  CAS  Google Scholar 

  7. James, J.A. et al. Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum. 44, 1122–1146 (2001).

    Article  CAS  Google Scholar 

  8. Ascherio, A. et al. Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286, 3083–3038 (2001).

    Article  CAS  Google Scholar 

  9. McClain, M.T., Harley, J.B. & James, J.A. The role of Epstein-Barr virus in systemic lupus erythematosus. Front. Biosci. 6, e137–147 (2001).

    Article  CAS  Google Scholar 

  10. Vaughan, J.H., Nguyen, M.D., Valbracht, J.R., Patrick, K. & Rhodes, G.H. Epstein-Barr virus-induced autoimmune responses. II. Immunoglobulin G autoantibodies to mimicking and nonmimicking epitopes. Presence in autoimmune disease. J. Clin. Invest. 95, 1316–1327 (1995).

    Article  CAS  Google Scholar 

  11. McClain, M.T., Rapp, E.C., Harley, J.B. & James, J.A. Infectious mononucleosis patients temporarily recognize a unique, cross-reactive epitope of Epstein-Barr virus nuclear antigen-1. J. Med. Virol. 70, 253–257 (2003).

    Article  CAS  Google Scholar 

  12. Sabbatini, A., Bombardieri, S. & Migliorini, P. Autoantibodies from patients with systemic lupus erythematosus bind a shared sequence of SmD and Epstein-Barr virus-encoded nuclear antigen EBNA I. Eur. J. Immunol. 23, 1146–1152 (1993).

    Article  CAS  Google Scholar 

  13. James, J.A. & Harley, J.B. Linear epitope mapping of an Sm B/B′ polypeptide. J. Immunol. 148, 2074–2079 (1992).

    CAS  PubMed  Google Scholar 

  14. James, J.A., Scofield, R.H. & Harley, J.B. Lupus humoral autoimmunity after short peptide immunization. Ann. NY Acad. Sci. 5, 124–127 (1997).

    Article  Google Scholar 

  15. Riemekasten, G. et al. A novel epitope on the C-terminus of Sm D1 is recognized by the majority of sera from patients with systemic lupus erythematosus. J. Clin. Invest. 102, 754–763 (1998).

    Article  CAS  Google Scholar 

  16. Arbuckle, M.R., Reichlin, M., Harley, J.B. & James, J.A. Shared early autoantibody recognition events in the development of anti-Sm B/B′ in human lupus. Scand. J. Immunol. 50, 447–455 (1999).

    Article  CAS  Google Scholar 

  17. Huang, S.C., Scofield, R.H. & Harley, J.B. Human anti-Ro autoantibodies bind multiple conformational epitopes of 60 kDa Ro autoantigen. J. Clin. Immunol. 156, 4059–4066 (1997).

    Google Scholar 

  18. Scofield, A.N., Kurien, B.T., Gordon, T.P. & Scofield, R.H. Can B cell epitopes of 60 kDa Ro distinguish systemic lupus erythematosus from Sjögren's syndrome? Lupus 10, 547–553 (2001).

    Article  CAS  Google Scholar 

  19. Routsias, J.G. et al. Structural, molecular and immunological properties of linear B-cell epitopes of Ro 60 KD autoantigen. Scand. J. Immunol. 47, 280–287 (1998).

    Article  CAS  Google Scholar 

  20. McClain, M.T. et al. Structural availability influences the capacity of autoantigenic epitopes to induce a widespread lupus-like autoimmune response. Proc. Natl. Acad. Sci. USA 101, 3551–3556 (2004).

    Article  CAS  Google Scholar 

  21. McClain, M.T., Ramsland, P.A., Kaufman, K.M. & James, J.A. Anti-Sm autoantibodies in systemic lupus target highly basic surface structures of complexed spliceosomal autoantigens. J. Immunol. 168, 2054–2062 (2002).

    Article  CAS  Google Scholar 

  22. McClain, M.T., Scofield, R.H., Kurien, B.T., Gross, T.F. & James, J.A. Selective small antigenic structures are capable of inducing widespread autoimmunity which closely mimics the humoral fine specificity of human SLE. Scand. J. Immunol. 56, 399–407 (2002).

    Article  CAS  Google Scholar 

  23. Deshmukh, U.S. et al. Ro60 peptides induce antibodies to similar epitopes shared among lupus–related autoantigens. J. Immunol. 164, 6655–6661 (2000).

    Article  CAS  Google Scholar 

  24. Deshmukh, U.S. et al. Immune responses to Ro60 and its peptides in mice. I. The nature of the immunogen and endogenous autoantigen determine the specificities of the induced autoantibodies. J. Exp. Med. 189, 531–540 (1999).

    Article  CAS  Google Scholar 

  25. Thompson, M.P. & Kurzrock, R. Epstein-Barr virus and cancer. Clin. Cancer Res. 10, 803–821 (2004).

    Article  CAS  Google Scholar 

  26. Harley, J.B. & James, J.A. Is there a role for Epstein-Barr virus in Lupus? The Immunologist 6, 79–83 (1998).

    CAS  Google Scholar 

  27. Kong, P.L. et al. Intrinsic T cell defects in systemic autoimmunity. Ann. NY Acad. Sci. 987, 60–67 (2003).

    Article  CAS  Google Scholar 

  28. Goodnow, C.C. Balancing immunity and tolerance: deleting and tuning lymphorepertoires. Proc. Natl. Acad. Sci. USA 93, 2264–2271 (1996).

    Article  CAS  Google Scholar 

  29. Kang, I. et al. Defective control of latent Epstein–Barr virus infection in systemic lupus erythematosus. J. Immunol. 172, 1287–1294 (2004).

    Article  CAS  Google Scholar 

  30. Hochberg, M.C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 40, 1725 (1998).

    Article  Google Scholar 

Download references


The authors thank J. Vaughan for the infectious mononucleosis sera, M. Reichlin and the Oklahoma Clinical Immunology Laboratory for SLE patient sera, T. Gross, Y. Akbarali, B. Bruner and T. Bruner for their technical assistance, and X. Kim for statistical analysis. This work has been supported by the US National Institutes of Health grants (AI31584, AR45451, AI47575, AR48045, AI53747, AI54117, AR45084, AR45231, AR42460, AR48940, AI24717, RR20143, RR15577, RR14467, and DE015223), the Presbyterian Health Foundation and the US Department of Veterans Affairs. The opinions and assertions contained herein are private views of the authors and are not to be construed as official or as reflecting the views of the US Army, Navy or the Department of Defense.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Judith A James.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McClain, M., Heinlen, L., Dennis, G. et al. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med 11, 85–89 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing