Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of a novel dual angiotensin II/vasopressin receptor on the basis of molecular recognition theory

Abstract

The molecular recognition theory suggests that binding sites of interacting proteins, for example, peptide hormone and its receptor binding site, were originally encoded by and evolved from complementary strands of genomic DNA. To test this theory, we screened a rat kidney complementary DNA library twice: first with the angiotensin II (All) followed by the vasopressin (AVP) antisense oligonucleotide probe, expecting to isolate cDNA clones of the respective receptors. Surprisingly, the identical cDNA clone was isolated twice independently. Structural analysis revealed a single receptor polypeptide with seven predicted transmembrane regions, distinct All and AVP putative binding domains, a Gs, protein–activation motif, and an internalization recognition sequence. Functional analysis revealed specific binding to both All and AVP as well as All– and AVP–induced coupling to the adenylate cyclase second messenger system. Site–directed mutagenesis of the predicted All binding domain obliterates All binding but preserves AVP binding. This corroborates the dual nature of the receptor and provides direct molecular genetic evidence for the molecular recognition theory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blalock, J.E. & Smith, E.M. Hydropathic anti-complementarity of amino acids based on the genetic code. Biochem. biophys. Res. Commun. 121, 203–207 (1984).

    Article  CAS  Google Scholar 

  2. Bost, K.L., Smith, E.M. & Blalock, J.E. Similarity between the corticotropin (ACTH) receptor and a peptide encoded by an RNA that is complementary to ACTH mRNA. Proc. riatn. Acad. Sci. USA. 82, 1372–1375 (1985).

    Article  CAS  Google Scholar 

  3. Mulcahey, J.J., Neill, J.D., Dion, L.D., Bost, K.L. & Blalock, J.E. Antibodies to the binding site of the receptor for luteinizing hormone-releasing hormone (LHRH): Generation with a synthetic decapeptide encoded by an RNA complementary to LHRH mRNA. Proc. natn. Acad. Sci. U.S.A. 83, 9714–9718 (1986).

    Article  Google Scholar 

  4. Baranyi, L. et al. The antisense homology box: A new motif within proteins that encodes biologically active peptides. Nature Med. 1, 894–901 (1995).

    Article  CAS  Google Scholar 

  5. Carr, D.J., Bost, K.L. & Blalock, J.E. An antibody to a peptide specified by an RNA that is complementary to γ-endorphin mRNA recognizes an opiate receptor. J. Neuroimmun. 12, 329–337 (1986).

    Article  CAS  Google Scholar 

  6. Gorcs, J.J., Gottschall, P.E., Coy, D.H. & Arimura, A. Possible recognition of the GnRH receptor by an antiserum against a peptide encoded by nucleotide sequence complementary to mRNA of a GnRH precursor peptide. Peptides 7, 1137–1145(1986).

    Article  CAS  Google Scholar 

  7. Knutson, V.P. Insulin-binding peptide: Design and characterization. J. biol. Chem. 263, 14146–14151 (1988).

    CAS  Google Scholar 

  8. Abood, L.G., Michael, G.J., Xin, L. & Knigge, K.M. Interaction of putative vaso-pressin receptor proteins of rat brain and bovine pituitary gland with an antibody against a nanopeptide encoded by the reverse message of the complementary mRNA to vasopressin. J. Recept. Res. 9, 19–25 (1989).

    Article  CAS  Google Scholar 

  9. Swords, B.H., Carr, D.J.J., Blalock, J.E. & Berecek, K.H. An antibody directed against a peptide encoded by RNA complementary to mRNA for vasopressin recognizes putative vasopressin receptors. Neuroendocrinology 51, 487–492 (1990).

    Article  CAS  Google Scholar 

  10. Elton, T.S., Dion, L.D., Bost, K.L., Oparil, S. & Blalock, J.E. Purification of an angiotensin II binding protein by using antibodies to a peptide encoded by angiotensin II complementary RNA. Proc. natn. Acad. Sci. U.S.A. 85, 2518–2522 (1988).

    Article  CAS  Google Scholar 

  11. Moore, G.J., Ganter, R.C. & Franklin, K.J. Angiotensin “antipeptides”: (−) messenger RNA complementary to human angiotensin II (+) messenger RNA encodes an angiotensin receptor antagonist. Biochem. biophys. Res. Commun. 160, 1387–1391 (1989).

    Article  CAS  Google Scholar 

  12. Budisavljevic, M. et al. Antagonist effect of a receptor mimicking peptide encoded by human angiotensin II complementary RNA. Hypertension 19, 345–354 (1992).

    Article  CAS  Google Scholar 

  13. Kang, C.Y., Brunck, T.K., Emmons, T.K., Blalock, J.E. & Kohler, H. Inhibition of self-binding antibodies (autobodies) by a VH-derived peptide. Science 240, 1034–1036 (1988).

    Article  CAS  Google Scholar 

  14. Brentani, R.R. et al. Characterization of the cellular receptor for fibronectin through a hydropathic complementarity approach. Proc. natn. Acad. Sci. U.S.A. 85, 364–367 (1988).

    Article  CAS  Google Scholar 

  15. Pasqualini, R., Chamone, D.F. & Brentani, R.R. Determination of the putative binding site for fibronectin on platelet glycoprotein IIb-IIIa complex through a hydropathic complementarity approach. J. biol. Chem. 264, 14566–14570 (1989).

    CAS  Google Scholar 

  16. Calvete, J.J. et al. Further studies on the topography of the N-terminal region of human platelet glycoprotein Ilia: Localization of monoclonal antibody epitopes and the putative flbrinogen-binding sites. Biochem. J. 274, 457–463 (1991).

    Article  CAS  Google Scholar 

  17. Ghiso, J., Saball, E., Leoni, J., Rostagno, A. & Frangione, B. Binding of cystatin C to C4: The importance of sense-antisense peptides in their interaction. Proc. natn. Acad. Sci. U.S.A. 87, 1288–1291 (1990).

    Article  CAS  Google Scholar 

  18. de Souza, S.J. & Brentani, R. Collagen binding site in collagenase can be determined using the concept of sense-antisense peptide interactions. J. biol. Chem. 267, 13763–13767 (1992).

    CAS  PubMed  Google Scholar 

  19. Castronova, V., Taraboletti, B. & Sobel, M. Laminin receptor complementary DNA deduced synthetic peptide inhibits cancer cell attachment to endothelium. Cancer Res. 51, 5672–5678 (1991).

    Google Scholar 

  20. Morel, F., Imbert-Teboul, M. & Chabardes, D. Receptors to vasopressin and other hormones in the mammalian kidney. Kidney Int. 31, 512–520 (1987).

    Article  CAS  Google Scholar 

  21. Kyte, J. & Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  22. Engleman, D.M., Steitz, T.A. & Goldman, A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. biophys. Chem. 15, 321–353 (1986).

    Article  Google Scholar 

  23. Okamoto, T. et al. Identification of a Gs activator region of the β2-adrenergic receptor that is autoregulated via protein kinase A-dependent phosphorylation. Cell 67, 723–730 (1991).

    Article  CAS  Google Scholar 

  24. Blackshear, P.J., Nairn, A.C. & Kuo, J.F. Protein kinases 1988: A current perspective. FASEB J. 2, 2957–2969 (1988).

    Article  CAS  Google Scholar 

  25. Davis, C.G. et al. Mutation in familial hypercholesterolemia: Amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell 45, 15–24 (1986).

    Article  CAS  Google Scholar 

  26. Davis, C.G., Van Driel, I.R., Russell, D.W., Brown, M.S. & Goldstein, J.L. The low density lipoprotein receptor: Identification of amino adds in cytoplasmic domain required for rapid internalization. J. biol. Chem. 262, 4075–4082 (1987).

    CAS  PubMed  Google Scholar 

  27. Chen, W.J., Goldstein, J.L. & Brown, M.S. NPSY, a sequence often found in cytoplasmic tails is required for coated pit-mediated internalization of the low density lipoprotein receptor. J. biol. Chem. 265, 3116–3123 (1990).

    CAS  Google Scholar 

  28. Taylor, M.E., Conary, J.T., Lennartz, M.R., Sthal, P.D. & Drickramer, K. Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate recognition domains. J. biol. Chem. 265, 12156–12162 (1990).

    CAS  Google Scholar 

  29. Trowbridge, I.S. Endocytosis and signals for internalization. Curr. Opin. Cell Biol. 3, 634–641 (1991).

    Article  CAS  Google Scholar 

  30. Murphy, T.J., Alexander, R.W., Griendling, K.K., Runge, M.S. & Bernstein, K.E. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351, 233–236 (1991).

    Article  CAS  Google Scholar 

  31. Sasaki, K. et al. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 351, 230–233 (1991).

    Article  CAS  Google Scholar 

  32. Sandberg, K., Ji, H., Clark, A.J.L., Shapira, H. & Cart, K.J. Cloning and expression of a novel angiotensin II receptor subtype. J. biol. Chem. 267, 9455–9458 (1992).

    CAS  PubMed  Google Scholar 

  33. Lolait, S.J. et al. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 357, 336–339 (1992).

    Article  CAS  Google Scholar 

  34. Birnbaumer, M. et al. Molecular cloning of the receptor for human antidiuretic hormone. Nature 357, 333–335 (1992).

    Article  CAS  Google Scholar 

  35. Morel, A., O'Carroll, A.M., Brownstein, M.J. & Lolait, S.J. Molecular cloning and expression of a rat V1aarginine vasopressin receptor. Nature 356, 532–526 (1992).

    Article  Google Scholar 

  36. Sugimoto, T. et al. Molecular cloning and functional expression of a cDNA encoding the human Vlb vasopressin receptor. J. biol. Chem. 269, 27088–27092 (1994).

    CAS  PubMed  Google Scholar 

  37. Jard, S. Vasopressin isoreceptors in mammals: Relation to cyclic AMP-dependent and cyclic AMP-independent transduction mechanisms. Curr. Topics Membranes Transp. 18, 255–285 (1983).

    Article  CAS  Google Scholar 

  38. Jard, S. Vasopressin antagonists. Adv. Nephrol. 16, 1–16 (1987).

    CAS  Google Scholar 

  39. Pals, D.T., Masucci, F.D., Denning, G.S., Sipos, F. & Fessler, D.C. Role of the pressor action of angiotensin II in experimental hypertension. Circulation Res. 29, 673–681 (1971).

    Article  CAS  Google Scholar 

  40. Khosla, M.C. et al. Synthesis of some analogs of angiotensin II as specific antagonists of the parent hormone. J. med. Chem. 15, 792–795 (1972).

    Article  CAS  Google Scholar 

  41. Munoz-Ramirez, H., Khosla, M.C., Hall, M.M., Bumpus, F.M. & Khairallah, P.A. In vitro and in vivo studies of [1-sarcosine, 8-threonine]angiotensin II. Res. Commun. Chem. Pathol. Pharmacol. 13, 649–663 (1976).

    CAS  PubMed  Google Scholar 

  42. Manning, M. et al. Potent and selective antagonists of the antidiuretic responses to arginine vasopressin based on modifications of [1-(β-mercapto-(β,β-pentamethylenepropionic acid), 2-D-isoleucine, 4-valine] arginine-vasopressin at position 4. J. med. Chem. 27, 423–429 (1984).

    Article  CAS  Google Scholar 

  43. Dohlman, H.G., Caron, M.G. & Lefkowitz R.J. A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry 26, 2657–2664 (1987).

    Article  CAS  Google Scholar 

  44. Douglas, J.G. Angiotensin receptor subtypes of the kidney cortex. Am. J. Physiol. 253, F1–F7 (1987).

    CAS  PubMed  Google Scholar 

  45. Ohkubo, H. et al. Cloning and sequence analysis of cDNA for rat angiotensinogen. Proc. natn. Acad. Sci. U.S.A. 80, 2196–2200 (1983).

    Article  CAS  Google Scholar 

  46. Ivell, R. & Richter, D. Structure and comparison of the oxytocin and vasopressin genes from rat. Proc. natn. Acad. Sci. U.S.A. 81, 2006–2010 (1984).

    Article  CAS  Google Scholar 

  47. Rogers, T.B., Gaa, S.T. & Alien, I.S. Identification and characterization of functional angiotensin II receptors on cultured heart myocytes. J. Pharmac. exp. Ther. 236, 438–444 (1986).

    CAS  Google Scholar 

  48. Herrera, V.L.M., Chobanian, A.V. & Ruiz-Opazo, N. Isoform-specific modulation of Na+,K+-ATPase α-subunit gene expression in hypertension. Science 241, 221–223 (1988).

    Article  CAS  Google Scholar 

  49. Phillipson, O.T. & Gonzalez, C.B. Distribution of axons showing neurophysin-like immunoreactivity in cortical and anterior basal forebrain sites. Brain Res. 258, 33–44 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Opazo, N., Akimoto, K. & Herrera, V. Identification of a novel dual angiotensin II/vasopressin receptor on the basis of molecular recognition theory. Nat Med 1, 1074–1081 (1995). https://doi.org/10.1038/nm1095-1074

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1095-1074

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing