Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Potential role of presenilin-regulated signaling pathways in sporadic neurodegeneration

Abstract

Neurodegenerative diseases can be genetic or sporadic in origin. Genetic analysis has changed the study of the pathogenesis of these disorders by showing the causative functions of rare mutations. Yet, in the most common age-associated neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, the causes of neurodegeneration remain to be clarified. The observations that presenilin modulates proteolysis and turnover of several signaling molecules have led to speculations that pathways that are important in development may contribute to neurodegeneration. In this article, the possibility that these presenilin-regulated molecules may contribute to neurodegeneration is reviewed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic showing the multiple physiological functions of presenilin.
Figure 2: Schematic of the dimer model of presenilin (PS) at the core of the γ-secretase complex that cleaves various substrates, including Notch and APP.
Figure 3: Schematic showing the type I membrane proteins that are known substrates for γ-secretase and presenilin.

Similar content being viewed by others

References

  1. Katzman, R. Alzheimer's disease. N. Engl. J. Med. 314, 964–973 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Terry, R.D. et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Selkoe, D.J. Alzheimer's disease is a synaptic failure. Science 298, 789–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Hardy, J. & Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Terry, R.D. An honorable compromise regarding amyloid in Alzheimer disease. Ann. Neurol. 49, 684 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Kirkitadze, M.D., Bitan, G. & Teplow, D.B. Paradigm shifts in Alzheimer's disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J. Neurosci. Res. 69, 567–577 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Vassar, R. et al. β-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Brown, M.S., Ye, J., Rawson, R.B. & Goldstein, J.L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Rogaev, E.I. et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775–778 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Weihofen, A., Binns, K., Lemberg, M.K., Ashman, K., & Martoglio, B. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296, 2215–2218 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Wolfe, M.S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398, 513–517 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Xia, W. & Wolfe, M.S. Intramembrane proteolysis by presenilin and presenilin-like proteases. J. Cell Sci. 116, 2839–2844 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Edbauer, D. et al. Reconstitution of γ-secretase activity. Nat. Cell Biol. 5, 486–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Kimberly, W.T. et al. γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc. Natl. Acad. Sci. USA 100, 6382–6387 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takasugi, N. et al. The role of presenilin cofactors in the γ-secretase complex. Nature 422, 438–441 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Luo, W.J. et al. PEN-2 and APH-1 coordinately regulate proteolytic processing of presenilin 1. J. Biol. Chem. 278, 7850–7854 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Selkoe, D. & Kopan, R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu. Rev. Neurosci. 26, 565–597 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Jarrett, J.T., Berger, E.P. & Lansbury, P.T.J. The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32, 4693–4697 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Yankner, B.A. Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 16, 921–932 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Murayama, O. et al. Enhancement of amyloid β42 secretion by 28 different presenilin 1 mutations of familial Alzheimer's disease. Neurosci. Lett. 265, 61–63 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Teller, J.K. et al. Presence of soluble amyloid β-peptide precedes amyloid plaque formation in Down's syndrome. Nat. Med. 2, 93–95 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Prasher, V.P. et al. Molecular mapping of Alzheimer-type dementia in Down's syndrome. Ann. Neurol. 43, 380–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Corder, E.H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Bales, K.R. et al. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat. Genet. 17, 263–264 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. DeMattos, R.B. et al. ApoE and clusterin cooperatively Ssuppress Aβ levels and deposition. Evidence that ApoE regulates extracellular Aβ metabolism in vivo. Neuron 41, 193–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Wolozin, B. et al. Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 274, 1710–1713 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Guo, Q. et al. Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid β-peptide. J. Neurosci. 272, 3590–3598 (1997).

    Google Scholar 

  28. Chui, D. et al. Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nature 5, 560–564 (1999).

    CAS  Google Scholar 

  29. Guo, Q. et al. Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat. Med. 5, 101–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Siman, R. et al. Presenilin-1 P264L knock-in mutation: differential effects on Aβ production, amyloid deposition, and neuronal vulnerability. J. Neurosci. 20, 8717–8726 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saura, C.A. et al. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42, 23–36 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Rozmahel, R. et al. Normal brain development in PS1 hypomorphic mice with markedly reduced γ-secretase cleavage of βAPP. Neurobiol. Aging 23, 187–194 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Leissring, M.A. et al. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J. Cell Biol. 149, 793–798 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoo, A.S. et al. Presenilin-mediated modulation of capacitative calcium entry. Neuron 27, 561–572 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Mattson, M.P., Chan, S.L. & Camandola, S. Presenilin mutations and calcium signaling defects in the nervous and immune systems. Bioessays 23, 733–744 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. LaFerla, F.M. Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat. Rev. Neurosci. 3, 862–872 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, Y. & Cook, D.G. Presenilin-1 deficiency impairs glutamate-evoked intracellular calcium responses in neurons. Neuroscience 124, 501–505 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Mumm, J.S. et al. A ligand-induced extracellular cleavage regulates γ-secretase-like proteolytic activation of Notch1. Mol. Cell 5, 197–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Artavanis-Tsakonas, S., Rand, M.D. & Lake, R.J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Gaiano, N. & Fishell, G. The role of notch in promoting glial and neural stem cell fates. Annu. Rev. Neurosci. 25, 471–490 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Presente, A., Andres, A. & Nye, J.S. Requirement of Notch in adulthood for neurological function and longevity. NeuroReport 12, 3321–3325 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Presente, A., Boyles, R.S., Serway, C.N., De Belle, J.S. & Andres, A.J. Notch is required for long-term memory in Drosophila. Proc. Natl. Acad. Sci USA 101, 1764–1768 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Costa, R.M., Honjo, T. & Silva, A.J. Learning and memory deficits in Notch mutant mice. Curr. Biol. 13, 1348–1354 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Feng, R. et al. Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 323, 911–926 (2001).

    Article  Google Scholar 

  46. Hitoshi, S. et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 16, 846–858 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Redmond, L. & Ghosh, A. The role of Notch and Rho GTPase signaling in the control of dendritic development. Curr. Opin. Neurobiol. 11, 111–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Berezovska, O. et al. Notch1 inhibits neurite outgrowth in postmitotic primary neurons. Neuroscience 93, 433–439 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Sestan, N., Artavanis-Tsakonas, S. & Rakic, P. Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science 286, 741–746 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Berezovska, O., Xia, M.Q. & Hyman, B.T. Notch is expressed in adult brain, is coexpressed with presenilin-1, and is altered in Alzheimer disease. J. Neuropathol. Exp. Neurol. 57, 738–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Herreman, A. et al. Total inactivation of γ-secretase activity in presenilin-deficient embryonic stem cells. Nat. Cell Biol. 2, 461–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Donoviel, D.B. et al. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 13, 2801–2810 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schroeter, E.H. et al. A presenilin dimer at the core of the γ-secretase enzyme: insights from parallel analysis of Notch 1 and APP proteolysis. Proc. Natl. Acad. Sci. USA 100, 13075–13080 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moehlmann, T. et al. Presenilin-1 mutations of leucine 166 equally affect the generation of the Notch and APP intracellular domains independent of their effect on Aβ 42 production. Proc. Natl. Acad. Sci. USA 99, 8025–8030 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Song, W., Nadeau, P., Yuan, X., Shen, J. & Yankner, B.A. Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc. Natl. Acad. Sci. USA 96, 6959–6963 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kwok, J.B. et al. Presenilin-1 mutation L271V results in altered exon 8 splicing and Alzheimer's disease with non-cored plaques and no neuritic dystrophy. J. Biol. Chem. 278, 6748–6754 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Amtul, Z. et al. A presenilin 1 mutation associated with familial frontotemporal dementia inhibits γ-secretase cleavage of APP and notch. Neurobiol. Dis. 9, 269–273 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Lleo, A. et al. Notch1 competes with the amyloid precursor protein for γ-secretase and down-regulates presenilin-1 gene expression. J. Biol. Chem. 278, 47370–47375 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat. Med. 2, 864–870 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Cupers, P., Orlans, I., Craessaerts, K., Annaert, W. & De Strooper, B. The amyloid precursor protein (APP)-cytoplasmic fragment generated by γ-secretase is rapidly degraded but distributes partially in a nuclear fraction of neurones in culture. J. Neurochem. 78, 1168–1178 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Sastre, M. et al. Presenilin-dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. 2, 835–841 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kimberly, W.T., Zheng, J.B., Guenette, S.Y. & Selkoe, D.J. The intracellular domain of the β-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J. Biol. Chem. 276, 40288–40292 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Cao, X. & Sudhof, T.C. A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Scheinfeld, M.H., Ghersi, E., Laky, K., Fowlkes, B.J. & D'Adamio, L. Processing of β-amyloid precursor-like protein-1 and -2 by γ-secretase regulates transcription. J. Biol. Chem. 277, 44195–44201 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Gao, Y. & Pimplikar, S.W. The γ-secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus. Proc. Natl. Acad. Sci USA 98, 14979–14984 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baek, S.-H. et al. Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-κB and β-amyloid precursor protein. Cell 110, 55–67 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Zhao, Q. & Lee, F.S. The transcriptional activity of the APP intracellular domain-Fe65 complex is inhibited by activation of the NF-κB pathway. Biochemistry 42, 3627–3634 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Mattson, M.P. Cellular actions of β-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77, 1081–1132 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Turner, P.R., O'Connor, K., Tate, W.P. & Abraham, W.C. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol. 70, 1–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Zheng, H. et al. β-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81, 525–531 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Heber, S. et al. Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J. Neurosci. 20, 7951–7963 (2001).

    Article  Google Scholar 

  72. von Koch, C.S. et al. Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice. Neurobiol. Aging 18, 661–669 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Leissring, M.A. et al. A physiologic signaling role for the γ-secretase-derived intracellular fragment of APP. Proc. Natl. Acad. Sci. USA 99, 4697–4702 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yankner, B.A. et al. Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease. Science 245, 417–420 (1989).

    Article  CAS  PubMed  Google Scholar 

  75. Neve, R.L., McPhie, D.L. & Chen, Y. Alzheimer's disease: a dysfunction of the amyloid precursor protein. Brain Res. 886, 54–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Suh, Y.H. An etiological role of amyloidogenic carboxyl-terminal fragments of the β-amyloid precursor protein in Alzheimer's disease. J. Neurochem. 68, 1781–1791 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Passer, B. et al. Generation of an apoptotic intracellular peptide by γ-secretase cleavage of Alzheimer's amyloid β protein precursor. J. Alzheimer's Dis. 2, 289–301 (2000).

    Article  CAS  Google Scholar 

  78. Hashimoto, Y. et al. The cytoplasmic domain of Alzheimer's amyloid-β protein precursor causes sustained apoptosis signal-regulating kinase 1/c-Jun NH2-terminal kinase-mediated neurotoxic signal via dimerization. J. Pharmacol. Exp. Ther. 306, 889–902 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Lu, D.C. et al. A second cytotoxic proteolytic peptide derived from amyloid β-protein precursor. Nat. Med. 6, 397–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Lu, D.C., Shaked, G.M., Masliah, E., Bredesen, D.E. & Koo, E.H. Amyloid β protein toxicity mediated by the formation of amyloid-β protein precursor complexes. Ann. Neurol. 54, 781–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Ikeuchi, T. & Sisodia, S.S. The Notch ligands, Delta1 and Jagged2, are substrates for presenilin-dependent “γ-secretase” cleavage. J. Biol. Chem. 278, 7751–7754 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Taniguchi, Y., Kim, S.H. & Sisodia, S.S. Presenilin-dependent “γ-secretase” processing of deleted in colorectal cancer (DCC). J. Biol. Chem. 278, 30425–30428 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. LaVoie, M.J. & Selkoe, D.J. The Notch ligands, Jagged and Delta, are sequentially processed by γ-secretase and presenilin/γ-secretase and release signaling fragments. J. Biol. Chem. 278, 34427–34437 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Ni, C.Y., Murphy, M.P., Golde, T.E. & Carpenter, G. γ-secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294, 2179–2181 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Jung, K.M. et al. Regulated intramembrane proteolysis of the p75 neurotrophin receptor modulates its association with the TrkA receptor. J. Biol. Chem. 278, 42161–42169 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Kim, D.Y., Ingano, L.A. & Kovacs, D.M. Nectin-1α, an immunoglobulin-like receptor involved in the formation of synapses, is a substrate for presenilin/γ-secretase-like cleavage. J. Biol. Chem. 277, 49976–49981 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Lee, H.J. et al. Presenilin-dependent γ-secretase-like intramembrane cleavage of ErbB4. J. Biol. Chem. 277, 6318–6323 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. May, P., Reddy, Y.K. & Herz, J. Proteolytic processing of low density lipoprotein receptor-related protein mediates regulated release of its intracellular domain. J. Biol. Chem. 277, 18736–18743 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Marambaud, P. et al. A CBP binding transcriptional repressor produced by the PS1/ε-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell 114, 635–645 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Marambaud, P. et al. A presenilin-1/γ-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J. 21, 1948–1956 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lammich, S. et al. Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Aβ-like peptide. J. Biol. Chem. 277, 44754–44759 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Schulz, J.G. et al. Syndecan 3 intramembrane proteolysis is presenilin/γ-secretase-dependent and modulates cytosolic signaling. J. Biol. Chem. 278, 48651–48657 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. May, P., Bock, H.H., Nimpf, J. & Herz, J. Differential glycosylation regulates processing of lipoprotein receptors by γ-secretase. J. Biol. Chem. 278, 37386–37392 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Murakami, D. et al. Presenilin-dependent γ-secretase activity mediates the intramembranous cleavage of CD44. Oncogene 22, 1511–1516 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Struhl, G. & Adachi, A. Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol. Cell 6, 625–636 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Kopan, R. & Ilagan, X.G. γ-secretase: proteosome of the membrane? Nat. Rev. Mol. Cell Biol., in press.

  97. Crone, S.A. & Lee, K.F. Gene targeting reveals multiple essential functions of the neuregulin signaling system during development of the neuroendocrine and nervous systems. Ann. NY Acad. Sci. 971, 547–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Livesey, F.J. Netrins and netrin receptors. Cell Mol. Life Sci. 56, 62–68 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Chao, M.V. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Yaar, M. et al. Binding of β-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer's disease. J. Clin. Invest 100, 2333–2340 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, K.C., Kim, J.A., Sivasankaran, R. & He, Z. p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG, and OMgp. Nature 420, 74–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Okamoto, I. et al. Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling pathway. J. Cell Biol. 155, 755–762 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jiang, H., Nucifora, F.C., Jr., Ross, C.A. & DeFranco, D.B. Cell death triggered by polyglutamine-expanded huntingtin in a neuronal cell line is associated with degradation of CREB-binding protein. Hum. Mol. Genet. 12, 1–12 (2003).

    Article  PubMed  Google Scholar 

  104. Phiel, C.J., Wilson, C.A., Lee, V.M. & Klein, P.S. GSK-3_ regulates production of Alzheimer's disease amyloid-β peptides. Nature 423, 435–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Takashima, A. et al. Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau. Proc. Natl. Acad. Sci. USA 95, 9637–9641 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lucas, J.J. et al. Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice. EMBO J. 20, 27–39 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Barker, N., Morin, P.J. & Clevers, H. The yin-yang of TCF/β-catenin signaling. Adv. Cancer Res. 77, 1–24 (2000).

    CAS  PubMed  Google Scholar 

  108. Liu, C. et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Kang, D.E. et al. Presenilin couples the paired phosphorylation of β-catenin independent of axin: implications for β-catenin activation in tumorigenesis. Cell 110, 751–762 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Soriano, S. et al. Presenilin 1 negatively regulates β-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of β-amyloid precursor protein and Notch processing. J. Cell Biol. 152, 785–794 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Annaert, W.G. et al. Interaction with telencephalin and the amyloid precursor protein predicts a ring structure for presenilins. Neuron 32, 579–589 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Colamarino for reviewing the manuscript and for her suggestions, and M. Mehler for previous discussions. Studies from the authors' laboratories have been supported in part by grants NIH GM 55479 (R.K.), NS 28121 (E.H.K.), AG05131 (E.H.K.), Alzheimer's Association Grant RG991516 (R.K.) and Zenith Award ZEN-01-3050 (R.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward H Koo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koo, E., Kopan, R. Potential role of presenilin-regulated signaling pathways in sporadic neurodegeneration. Nat Med 10 (Suppl 7), S26–S33 (2004). https://doi.org/10.1038/nm1065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1065

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing