Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stem cell therapy for human neurodegenerative disorders–how to make it work

Abstract

Recent progress shows that neurons suitable for transplantation can be generated from stem cells in culture, and that the adult brain produces new neurons from its own stem cells in response to injury. These findings raise hope for the development of stem cell therapies in human neurodegenerative disorders. Before clinical trials are initiated, we need to know much more about how to control stem cell proliferation and differentiation into specific phenotypes, induce their integration into existing neural and synaptic circuits, and optimize functional recovery in animal models closely resembling the human disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Generation of neurons in vitro from stem cells.
Figure 2: Generation of dopaminergic neurons for Parkinson's disease.
Figure 3: Generation of striatal neurons from endogenous stem cells after stroke.
Figure 4: Generation of cholinergic motor neurons for ALS.

References

  1. 1

    Kordower, J.H. et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. N. Engl. J. Med. 332, 1118–1124 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2

    Piccini, P. et al. Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nat. Neurosci. 2, 1137–1140 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Piccini, P. et al. Delayed recovery of movement-related cortical function in Parkinson's disease after striatal dopaminergic grafts. Ann. Neurol. 48, 689–695 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Lindvall, O. & Hagell, P. Clinical observations after neural transplantation in Parkinson's disease. Prog. Brain Res. 127, 299–320 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Polgar, S., Morris, M.E., Reilly, S., Bilney, B. & Sanberg, P.R. Reconstructive neurosurgery for Parkinson's disease: a systematic review and preliminary meta-analysis. Brain Res. Bull. 60, 1–24 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Freed, C.R. et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N. Engl. J. Med. 344, 710–719 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Olanow, C.W. et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann. Neurol. 54, 403–414 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Kordower, J.H. et al. Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson's disease. Mov. Disord. 13, 383–393 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9

    Kordower, J.H. et al. Functional fetal nigral grafts in a patient with Parkinson's disease: chemoanatomic, ultrastructural, and metabolic studies. J. Comp. Neurol. 370, 203–230 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Hagell, P. et al. Dyskinesias following neural transplantation in Parkinson's disease. Nat. Neurosci. 5, 627–628 (2002).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Ma, Y. et al. Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann. Neurol. 52, 628–634 (2002).

    PubMed  Article  Google Scholar 

  12. 12

    Isacson, O., Björklund, L.M. & Schumacher, J.M. Toward full restoration of synaptic and terminal function of the dopaminergic system in Parkinson's disease by stem cells. Ann. Neurol. 53, S135–S146 (2003).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Hagell, P. & Brundin, P. Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J. Neuropathol. Exp. Neurol. 60, 741–752 (2001).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Draper, J.S. et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53–54 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Amit, M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278 (2000).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Villa, A. et al. Long-term molecular and cellular stability of human neural stem cell lines. Exp. Cell. Res. 294, 559–570 (2004).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Roy, N.S. et al. Telomerase immortalization of neuronally restricted progenitor cells derived from the human fetal spinal cord. Nat. Biotechnol. 22, 297–305 (2004).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Song, H., Stevens, C.F. & Gage, F.H. Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44 (2002).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Wagner, J. et al. Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nat. Biotechnol. 17, 653–659 (1999).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Zwaka, T.P. & Thomson, J.A. Homologous recombination in human embryonic stem cells. Nat. Biotechnol. 21, 319–321 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21

    Zhao, M. et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc. Natl. Acad. Sci. USA 100, 7925–7930 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Lie, D.C. et al. The adult substantia nigra contains progenitor cells with neurogenic potential. J. Neurosci. 22, 6639–6649 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Mao, L., Lau, Y.S., Petroske, E. & Wang, J.Q. Profound astrogenesis in the striatum of adult mice following nigrostriatal dopaminergic lesion by repeated MPTP administration. Dev. Brain Res. 131, 57–65 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Nowakowski, R.S. & Hayes, N.L. Stem cells: the promises and pitfalls. Neuropsychopharmacology 25, 799–804 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25

    El-Khodor, B.F., Oo, T.F., Kholodilov, N. & Burke, R.E. Ectopic expression of cell cycle markers in models of induced programmed cell death in dopamine neurons of the rat substantia nigra pars compacta. Exp. Neurol. 179, 17–27 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Vitek, J.L. Deep brain stimulation for Parkinson's disease. A critical re-evaluation of STN versus GPi DBS. Stereotact. Funct. Neurosurg. 78, 119–131 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Winkler, C., Kirik, D., Björklund, A. & Dunnett, S.B. Transplantation in the rat model of Parkinson's disease: ectopic versus homotopic graft placement. Prog. Brain Res. 127, 233–265 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Mukhida, K., Baker, K.A., Sadi, D. & Mendez, I. Enhancement of sensorimotor behavioral recovery in hemiparkinsonian rats with intrastriatal, intranigral, and intrasubthalamic nucleus dopaminergic transplants. J. Neurosci. 21, 3521–3530 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Mendez, I. et al. Simultaneous intrastriatal and intranigral fetal dopaminergic grafts in patients with Parkinson disease: a pilot study. Report of three cases. J. Neurosurg. 96, 589–596 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30

    Shim, J.W. et al. Enhanced in vitro midbrain dopamine neuron differentiation, dopaminergic function, neurite outgrowth, and 1-methyl-4-phenylpyridium resistance in mouse embryonic stem cells overexpressing Bcl-XL. J. Neurosci. 24, 843–852 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31

    Kim, J.H. et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418, 50–56 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Chung, S. et al. Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur. J. Neurosci. 16, 1829–1838 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Moon, L.D., Asher, R.A., Rhodes, K.E. & Fawcett, J.W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat. Neurosci. 4, 465–466 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Ourednik, J., Ourednik, V., Lynch, W.P., Schachner, M. & Snyder, E.Y. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat. Biotechnol. 20, 1103–1110 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Steece-Collier, K. et al. Embryonic mesencephalic grafts increase levodopa-induced forelimb hyperkinesia in parkinsonian rats. Mov. Disord. 18, 1442–1454 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Björklund, L.M. et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. USA 99, 2344–2349 (2002).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  37. 37

    Erdö, F. et al. Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J. Cereb. Blood Flow Metab. 23, 780–785 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    Kondziolka, D. et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55, 565–569 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Meltzer, C.C. et al. Serial [18F]fluorodeoxyglucose positron emission tomography after human neuronal implantation for stroke. Neurosurgery 49, 586–591 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Nelson, P.T. et al. Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am. J. Pathol. 160, 1201–1206 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Alvarez-Dolado, M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425, 968–973 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Weimann, J.M., Johansson, C.B., Trejo, A. & Blau, H.M. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat. Cell Biol. 5, 959–966 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Parent, J.M., Vexler, Z.S., Gong, C., Derugin, N. & Ferriero, D.M. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann. Neurol. 52, 802–813 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44

    Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Jin, K. et al. Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol. Cell Neurosci. 24, 171–189 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Jin, K., Mao, X.O., Sun, Y., Xie, L. & Greenberg, D.A. Stem cell factor stimulates neurogenesis in vitro and in vivo. J. Clin. Invest. 110, 311–319 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Yoshimura, S. et al. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc. Natl. Acad. Sci. USA 98, 5874–5879 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48

    Teramoto, T., Qiu, J., Plumier, J.C. & Moskowitz, M.A. EGF amplifies the replacement of parvalbumin-expressing striatal interneurons after ischemia. J. Clin. Invest. 111, 1125–1132 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Shingo, T., Sorokan, S.T., Shimazaki, T. & Weiss, S. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J. Neurosci. 21, 9733–9743 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50

    Gustafsson, E. et al. Anterograde delivery of brain-derived neurotrophic factor to striatum via nigral transduction of recombinant adeno-associated virus increases neuronal death but promotes neurogenic response following stroke. Eur. J. Neurosci. 17, 2667–2678 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  51. 51

    Chmielnicki, E., Benraiss, A., Economides, A.N. & Goldman, S.A. Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone. J. Neurosci. 24, 2133–2142 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52

    Ekdahl, C.T. et al. Caspase-mediated death of newly formed neurons in the adult rat dentate gyrus following status epilepticus. Eur. J. Neurosci. 16, 1463–1471 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  53. 53

    Ekdahl, C.T., Claasen, J.-H., Bonde, S., Kokaia, Z. & Lindvall, O. Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl. Acad. Sci. USA 203, 13632–13637 (2003).

    Article  CAS  Google Scholar 

  54. 54

    Monje, M.L., Toda, H. & Palmer, T.D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55

    Nakatomi, H. et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110, 429–441 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Zhang, R.L., Zhang, Z.G., Zhang, L. & Chopp, M. Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105, 33–41 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57

    Magavi, S.S., Leavitt, B.R. & Macklis, J.D. Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951–955 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58

    Eriksson, P.S. et al. Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59

    Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60

    Nunes, M.C. et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat. Med. 9, 439–447 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61

    Palmer, T.D., Willhoite, A.R. & Gage, F.H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Sun, Y. et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 111, 1843–1851 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Zhang, H., Vutskits, L., Pepper, M.S. & Kiss, J.Z. VEGF is a chemoattractant for FGF-2-stimulated neural progenitors. J. Cell Biol. 163, 1375–1384 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Park, K.I., Teng, Y.D. & Snyder, E.Y. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat. Biotechnol. 20, 1111–1117 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65

    Hoehn, M. et al. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc. Natl. Acad. Sci. USA 99, 16267–16272 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66

    Pluchino, S. et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422, 688–694 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Gates, M.A., Fricker-Gates, R.A. & Macklis, J.D. Reconstruction of cortical circuitry. Prog. Brain Res. 127, 115–156 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68

    Fricker-Gates, R.A., Shin, J.J., Tai, C.C., Catapano, L.A. & Macklis, J.D. Late-stage immature neocortical neurons reconstruct interhemispheric connections and form synaptic contacts with increased efficiency in adult mouse cortex undergoing targeted neurodegeneration. J. Neurosci. 22, 4045–4056 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69

    Nógrádi, A. & Vrbová, G. Improved motor function of denervated rat hindlimb muscles induced by embryonic spinal cord grafts. Eur. J. Neurosci. 8, 2198–2203 (1996).

    PubMed  Article  PubMed Central  Google Scholar 

  70. 70

    Clowry, G., Sieradzan, K. & Vrbová, G. Transplants of embryonic motoneurones to adult spinal cord: survival and innervation abilities. Trends Neurosci. 14, 355–357 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71

    Garbuzova-Davis, S. et al. Positive effect of transplantation of hNT neurons (NTera 2/D1 cell-line) in a model of familial amyotrophic lateral sclerosis. Exp. Neurol. 174, 169–180 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72

    Garbuzova-Davis, S. et al. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J. Hematother. Stem Cell Res. 12, 255–270 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73

    Kerr, D.A. et al. Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J. Neurosci. 23, 5131–5140 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74

    Dunnett, S.B., Nathwani, F. & Björklund, A. The integration and function of striatal grafts. Prog. Brain Res. 127, 345–380 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75

    Kendall, A.L. et al. Functional integration of striatal allografts in a primate model of Huntington's disease. Nat. Med. 4, 727–729 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76

    Palfi, S. et al. Fetal striatal allografts reverse cognitive deficits in a primate model of Huntington disease. Nat. Med. 4, 963–966 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77

    Freeman, T.B. et al. Transplanted fetal striatum in Huntington's disease: phenotypic development and lack of pathology. Proc. Natl. Acad. Sci. USA 97, 13877–13882 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78

    Bachoud-Levi, A.C. et al. Motor and cognitive improvements in patients with Huntington's disease after neural transplantation. Lancet 356, 1975–1979 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79

    Hauser, R.A. et al. Bilateral human fetal striatal transplantation in Huntington's disease. Neurology 58, 687–695 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80

    Gaura, V. et al. Striatal neural grafting improves cortical metabolism in Huntington's disease patients. Brain 127, 65–72 (2004).

    PubMed  Article  Google Scholar 

  81. 81

    Dinsmore, J. et al. Embryonic stem cells differentiated in vitro as a novel source of cells for transplantation. Cell Transplant. 5, 131–143 (1996).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Lescaudron, L., Unni, D. & Dunbar, G.L. Autologous adult bone marrow stem cell transplantation in an animal model of Huntington's disease: behavioral and morphological outcomes. Int. J. Neurosci. 113, 945–956 (2003).

    PubMed  Article  Google Scholar 

  83. 83

    Fricker, R.A. et al. Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci. 19, 5990–6005 (1999).

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Englund, U., Björklund, A. & Wictorin, K. Migration patterns and phenotypic differentiation of long-term expanded human neural progenitor cells after transplantation into the adult rat brain. Dev. Brain Res. 134, 123–141 (2002).

    CAS  Article  Google Scholar 

  85. 85

    Curtis, M.A. et al. Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proc. Natl. Acad. Sci. USA 100, 9023–9027 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86

    Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87

    Barberi, T. et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol. 21, 1200–1207 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88

    Kawasaki, H. et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc. Natl. Acad. Sci. USA 99, 1580–1585 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89

    Carvey, P.M. et al. A clonal line of mesencephalic progenitor cells converted to dopamine neurons by hematopoietic cytokines: a source of cells for transplantation in Parkinson's disease. Exp. Neurol. 171, 98–108 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90

    Storch, A. et al. Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells. Exp. Neurol. 170, 317–325 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91

    Studer, L. et al. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J. Neurosci. 20, 7377–7383 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92

    Studer, L., Tabar, V. & McKay, R.D. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci. 1, 290–295 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93

    Yan, J., Studer, L. & McKay, R.D. Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. J. Neurochem. 76, 307–311 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94

    Daadi, M.M. & Weiss, S. Generation of tyrosine hydroxylase-producing neurons from precursors of the embryonic and adult forebrain. J. Neurosci. 19, 4484–4497 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95

    Jiang, Y. et al. Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc. Natl. Acad. Sci. USA 100, 11854–11860 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96

    Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    CAS  Article  Google Scholar 

  97. 97

    Li, Y. et al. Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Neurosci. Lett. 316, 67–70 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98

    Chiba, S., Iwasaki, Y., Sekino, H. & Suzuki, N. Transplantation of motoneuron-enriched neural cells derived from mouse embryonic stem cells improves motor function of hemiplegic mice. Cell Transplant. 12, 457–468 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  99. 99

    Mujtaba, T. et al. Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dev. Biol. 214, 113–127 (1999).

    CAS  PubMed  Article  Google Scholar 

  100. 100

    Renoncourt, Y., Carroll, P., Filippi, P., Arce, V. & Alonso, S. Neurons derived in vitro from ES cells express homeoproteins characteristic of motoneurons and interneurons. Mech. Dev. 79, 185–197 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101

    Wichterle, H., Lieberam, I., Porter, J.A. & Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102

    Kalyani, A., Hobson, K. & Rao, M.S. Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis. Dev. Biol. 186, 202–223 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103

    Kalyani, A.J., Piper, D., Mujtaba, T., Lucero, M.T. & Rao, M.S. Spinal cord neuronal precursors generate multiple neuronal phenotypes in culture. J. Neurosci. 18, 7856–7868 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104

    Mayer-Proschel, M., Kalyani, A.J., Mujtaba, T. & Rao, M.S. Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron 19, 773–785 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105

    Li, R. et al. Motoneuron differentiation of immortalized human spinal cord cell lines. J. Neurosci. Res. 59, 342–352 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106

    Wu, P. et al. Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nat. Neurosci. 5, 1271–1278 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107

    Willing, A.E. et al. hNT neurons delay onset of motor deficits in a model of amyotrophic lateral sclerosis. Brain Res. Bull. 56, 525–530 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108

    Garbuzova-Davis, S. et al. Intraspinal implantation of hNT neurons into SOD1 mice with apparent motor deficit. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 2, 175–180 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Bengt Mattsson for illustrations. Our own work was supported by grants from the Swedish Research Council, Swedish Foundation for Strategic Research, the Kock, Söderberg, Crafoord and Segerfalk Foundations, EU (BIO04-CT98-0530 and QLK3-CT-2001-02120), Foundation La Caixa, and Spanish Ministry of Science and Technology (MCYT SAF2001-1038-C02-02). The Lund Stem Cell Center is supported by a Center of Excellence grant in life sciences from the Swedish Foundation for Strategic Research.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Olle Lindvall or Zaal Kokaia or Alberto Martinez-Serrano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lindvall, O., Kokaia, Z. & Martinez-Serrano, A. Stem cell therapy for human neurodegenerative disorders–how to make it work. Nat Med 10, S42–S50 (2004). https://doi.org/10.1038/nm1064

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing