Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid selection of complement-inhibiting protein variants in group A Streptococcus epidemic waves

Abstract

Serotype M1 group A Streptococcus strains cause epidemic waves of human infections long thought to be mono- or pauciclonal. The gene encoding an extracellular group A Streptococcus protein (streptococcal inhibitor of complement) that inhibits human complement was sequenced in 1,132 M1 strains recovered from population-based surveillance of infections in Canada, Finland and the United States. Epidemic waves are composed of strains expressing a remarkably heterogeneous array of variants of streptococcal inhibitor of complement that arise very rapidly by natural selection on mucosal surfaces. Thus, our results enhance the understanding of pathogen population dynamics in epidemic waves and infectious disease reemergence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequency distribution of abundant Sic variants over time in four study localities.
Figure 2: a, Evolutionary tree for sic alleles in a representative local area.
Figure 3: Inhibition of complement-mediated target cell lysis by Sic variants.
Figure 4: Sic variants identified among associated isolates.

Similar content being viewed by others

References

  1. Krause, R.M. & Fauci, A. in Emerging Infections (Academic Press, San Diego, 1998).

    Google Scholar 

  2. Hennessy, T.W. et al. A national outbreak of Salmonella enteritidis infections from ice cream. N. Engl. J. Med. 334, 1281 –1286 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Armstrong, G.L., Hollingsworth, J. & Morris, J.G. Jr. Emerging foodborne pathogens: Escherichia coli O157:H7 as a model of entry of a new pathogen into the food supply of the developed world. Epidemiol. Rev. 18, 29–51 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Piffaretti, J.-C. et al. Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease. Proc. Natl. Acad. Sci. USA 86, 3813–3822 ( 1989).

    Article  Google Scholar 

  5. Wachsmuth, I.K., Blake, P.A. & Olsvik, O. Vibrio cholerae and Cholera (American Society for Microbiology Press, Washington, D.C., 1994).

    Book  Google Scholar 

  6. Morelli, G. et al. Clonal descent and microevolution of Neisseria meningitidis during 30 years of epidemic spread. Mol. Microbiol. 25, 1047–1064 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Webster, R.G. in Emerging Infections (eds. Krause, R.M & Fauci, A.) 275– 300 (Academic Press, San Diego, 1998).

    Book  Google Scholar 

  8. Fischetti, V.A. Streptococcal M protein: molecular design and biologic behavior. Clin. Microbiol. Rev. 2, 285–314 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Musser, J.M. & Krause, R.M. in Emerging Infections (eds. Krause, R.M. & Fauci, A.) 185–218 (Academic Press, San Diego, 1998).

    Book  Google Scholar 

  10. Martin, D.R. & Single, L.A. Molecular epidemiology of group A streptococcus M type 1 infections. J. Infect. Dis. 167, 1112–1117 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Muotiala, A., Seppala, H., Huovinen, P. & Vuopio-Varkila, J. Molecular comparison of group A streptococci of T1M1 serotype from invasive and noninvasive infections in Finland. J. Infect. Dis. 175, 392–399 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Musser, J.M. et al. Genetic diversity and relationships among Streptococcus pyogenes strains expressing serotype M1 protein: recent continental spread of a subclone causing episodes of invasive disease. Infect. Immun. 63, 994–1003 ( 1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cleary, P.P. et al. Clonal basis for the resurgence of serious Streptococcus pyogenes disease in the 1980s. Lancet 339, 518–521 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Akesson, P., Sjoholm, A.G. & Bjorck, L. Protein SIC-a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J. Biol. Chem. 271, 1081–1088 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  15. Lubinski, J.M. et al. Herpes simplex virus type 1 glycoprotein gC mediates immune evasion in vivo. J. Virol. 72, 8257 –8263 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Stockbauer, K.E. et al. Hypervariability generated by natural selection in an extracellular complement-inhibiting protein of serotype M1 strains of group A Streptococcus . Proc. Natl. Acad. Sci. USA 95, 3128 –3133 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoe, N. et al. Rapid subtyping of serotype M1 Group A Streptococcus strains by automated sequencing of the sic gene encoding streptococcal inhibitor of complement and a chromosomal region with multiple direct repeat sequences. Emerg. Infect. Dis. 5, 254– 263 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davies, H.D. et al. Invasive group A streptococcal infections in Ontario, Canada. N. Engl. J. Med. 335, 547– 554 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Zurawski, C.A. et al. Invasive group A streptococcal disease in metropolitan Atlanta: a population-based assessment. Clin. Infect. Dis. 27 , 150–157 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Ramsay Taylor, W. The classification of amino acid conservation. J. Theor. Biol. 119, 205–218 ( 1986).

    Article  Google Scholar 

  21. Fitch, W.M. On the problem of discovering the most parsimonious trees. Am. Nat. 3, 223–257 ( 1977).

    Article  Google Scholar 

  22. Swofford, D.L. in PAUP: Phylogenetic Analysis Using Parsimony (Illinois Natural History Survey, Champaign, Illinois, 1993).

    Google Scholar 

  23. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu, Y.-X. Statistical properties of segregating sites. Theor. Popul. Biol. 48, 172–197 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  25. Harbaugh, M. P., Podbielski, A., Hugl, S. & Cleary, P.P. Nucleotide substitutions and small-scale insertion produce size and antigenic variation in group A streptococcal M1 protein. Mol. Microbiol. 8, 981–991 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. de Malmanche, S.A. & Martin, D.R. Protective immunity to the group A Streptococcus may be only strain specific. Med. Microbiol. Immunol. 183, 299– 306 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Jones, K.F., Hollingshead, S.K., Scott, J.R. & Fischetti, V.A. Spontaneous M6 protein size mutants of group A streptococci display variation in antigenic and opsonogenic epitopes. Proc. Natl. Acad. Sci. USA 85, 8271–8275 ( 1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fischetti, V.A., Jarymowycz, M., Jones, K.F. & Scott, J.R. Streptococcal M protein size mutants occur at high frequency within a single strain. J. Exp. Med. 164, 971– 980 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Hollingshead, S.K., Fischetti, V.A. & Scott, J.R. Size variation in group A streptococcal M protein is generated by homologous recombination between intragenic repeats. Mol. Gen. Genet. 207, 196–203 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Villasenor, A., McShan, W.M., Salmi, D. & Stevens, D.L. Variation in susceptibility to opsono-phagocytosis by strains of a M-1 clone of group A Streptococcus (GAS) could be associated with diversity in the sequence of the emm1 gene. Abstract E-61 (American Society for Microbiology 98th General Meeting, Atlanta, Georgia, 1998 ).

  31. Ou, C-Y. et al. Molecular epidemiology of HIV transmission in a dental practice. Science 256, 1165–1171 (1992).

  32. Garcia, O. et al. Evolutionary pattern of human respiratory syncytial virus (subgroup A): cocirculating lineages and correlation of genetic and antigenic changes in the G glycoprotein. J. Virol. 68, 5448–5459 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Domingo, E. & Holland, J.J. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51, 151–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Beall, B., Facklam, R., Hoenes, T. & Schwartz, B. Survey of gene sequences and T-antigen types from systemic Streptococcus pyogenes infection isolates collected in San Francisco, California; Atlanta, Georgia; and Connecticut in 1994 and 1995. J. Clin. Microbiol. 35, 1231–1235 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank W.A. Keitel and J. Dale for critical reading of the manuscript, R.S. Orkiszewski for the mass spectroscopy analysis, I. Eckstrand for support, and S. Ruusunen, R. Scotford and E. Siren for technical assistance. We thank A. Muotiala, H. Seppala, P. Huovinen and the Finnish Study Group for Antimicrobial Resistance for their work and support during collection of the Finnish strains. Specimens from the United States were provided by the Emerging Infections Program Network/Active Bacterial Core Surveillance, supported by a cooperative agreement between the Centers for Disease Control and Prevention and the State Health Departments of California, Connecticut, Georgia, and Minnesota. This study was supported by United States Public Health Service Grants AI-33119 to J.M.M. and GM-50428 to Y.-X. F., and the Canadian Bacterial Disease Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Musser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoe, N., Nakashima, K., Lukomski, S. et al. Rapid selection of complement-inhibiting protein variants in group A Streptococcus epidemic waves. Nat Med 5, 924–929 (1999). https://doi.org/10.1038/11369

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11369

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing