Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The control of microvascular permeability and blood pressure by neutral endopeptidase

Abstract

Plasma extravasation from postcapillary venules is one of the earliest steps of inflammation1. Substance P (SP) and bradykinin (BK) mediate extravasation and cause hypotension2–6. The cell-surface enzyme neutral endopeptidase (NEP) inactivates both peptides7,8. Thus, absence of NEP may predispose development of inflammation and hypotension. We examined these possibilities in mice in which the NEP gene was deleted by homologous recombination9. There was widespread basal plasma extravasation in postcapillary venular endothelia in NEP−/− mice, which was reversed by recombinant NEP and antagonists of SP (NK1) and BK (B2) receptors. Mean arterial blood pressure was 20% lower in NEP−/− animals, but this was unaffected by reintroduction of recombinant NEP and the kinin receptor antagonists. The hypotension was also independent of nitric oxide (NO), because NEP−/− mice treated with a NO synthase inhibitor remained hypotensive relative to the wild type. Thus, NEP has important roles in regulating basal microvascular permeability by degrading SP and BK, and may regulate blood pressure set point through a mechanism that is independent of SP, BK and NO. The use of NEP antagonists as candidate drugs in cardiovascular disease is suggested by the blood pressure data reported herein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Payan, D., Substance, P. in Inflammation: Basic Principles and Clinical Correlates (eds. Gallin, J.I., Goldstein, I.M. & Snyderman, R.) 177–191 (Raven, New York, 1992).

    Google Scholar 

  2. Von Euler, U.S. & Gaddum, J.H. An unidentified depressor substance in certain tissue extracts. J. Physiol. (Lond.) 72, 74–87 (1931).

    Article  Google Scholar 

  3. Lembeck, F. & Holzer, P. Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn-Schmiedeberg's Arch. Pharmacol. 310, 175–183 (1979).

    Article  CAS  Google Scholar 

  4. Lembeck, F. et al. The non-peptide tachykinin antagonist, CP-96, 345, is a potent inhibitor of neurogenic inflammation. Br. J. Pharmacol. 105, 527–30 (1992).

    Article  CAS  Google Scholar 

  5. Otsuka, M. & Yoshioka, K. Neurotransmitter functions of mammalian tachykinins. Physiol. Rev. 73, 229–308 (1993).

    Article  CAS  Google Scholar 

  6. Bhoola, K.D., Figueroa, C.D. & Woerthy, K. Bioregulation of kinins: Kallikreins, kininogens, and kininases. Pharmacol. Rev. 44, 1–80 (1992).

    CAS  PubMed  Google Scholar 

  7. Matsas, R. et al. Substance P and [Leu]enkephalin are hydrolyzed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc. Natl. Acad. Sci. USA 80, 3111–3115 (1983).

    Article  CAS  Google Scholar 

  8. Matsas, R., Kenny, A.J. & Turner, A.J. The metabolism of neuropeptides: The hydrolysis of peptides, including enkephalins, tachykinins and their analogues, by endopeptidase-24.11. Biochem. J. 233, 433–440 (1984).

    Article  Google Scholar 

  9. Lu, B. et al. Neutral endopeptidase modulation of septic shock. J. Exp. Med. 181, 2271–2275 (1995).

    Article  CAS  Google Scholar 

  10. Geppetti, P. Sensory neuropeptide release by bradykinin: Mechanisms and patho-physiological implications. Regal. Pept. 47, 1–23 (1993).

    Article  CAS  Google Scholar 

  11. Gee, N.S. et al. An immunoradiometric assay for endopeptidase-24.11 shows it to be a widely distributed enzyme in pig tissues. Biochem. J. 228, 119–126 (1985).

    Article  CAS  Google Scholar 

  12. Matsas, R., Kenny, A.J. & Turner, A.J. An immunohistochemical study of endopeptidase-24.11 (‘enkephalinase’) in the pig nervous system. Neuroscience 18, 991–1012 (1986).

    Article  CAS  Google Scholar 

  13. Bunnett, N.W. et al. Distribution and abundance of neutral endopeptidase (EC 3.4.24.11) in the alimentary tract of the rat. Am. J. Physiol. 264, G497G508 (1993).

    Article  CAS  Google Scholar 

  14. Umeno, E. et al. Inhibition of the neutral endopeptidase potentiates neurogenic inflammation in the rat trachea. J. Appl. Physiol. 66, 2647–2652 (1989).

    Article  CAS  Google Scholar 

  15. Lotvall, J.O. et al. Bradykinin-induced airway microvascular leakage is potentiated by captopril and phosphoramidon. Eur. J. Pharmacol. 200, 211–7 (1991).

    Article  CAS  Google Scholar 

  16. Saria, A. & Lundberg, J.M. Evans blue fluorescence: Quantitative and morphological evaluation of vascular permeability in animal tissues. J. Neurosci. Methods 8, 41–49 (1983).

    Article  CAS  Google Scholar 

  17. Joris, I. et al. Vascular labelling with Monastral blue B. Stain Technol. 57, 177–183 (1982).

    Article  CAS  Google Scholar 

  18. Emonds-Alt, X. et al. In vitro and in vivo biological activities of SR140333, a novel potent non-peptide tachykinin NK1 receptor antagonist. Eur. J. Pharmacol. 250, 403–413 (1993).

    Article  CAS  Google Scholar 

  19. Rhaleb, N.E. et al. Pharmacological characterization of a new highly potent B2 receptor antagonist (HOE 140: D-Arg-[Hyp3, Thi5, D-Tic7, Qic8] bradykinin). Eur. J. Pharmacol. 210, 115–120 (1992).

    Article  CAS  Google Scholar 

  20. Bunnett, N.W. et al. Metabolism of gastrin and cholecystokinin by endopeptidase 24.11 from the pig stomach. Am. J. Physiol. 255, G676–G684 (1988).

    CAS  PubMed  Google Scholar 

  21. Kenny, A.J. & Stephenson, S.L. Role of endopeptidase-24.11 in the inactivation of atrial natriuretic peptide. FASEB Lett. 232, 1–8 (1988).

    Article  CAS  Google Scholar 

  22. Gardiner, S.M. et al. Effects of the neutral endopeptidase inhibitor, SQ 28, 603, on regional haemodynamic responses to atrial natriuretic peptide or proendothelin-1 [1-38] in conscious rats. Br. J. Pharmacol. 106, 180–6 (1992).

    Article  CAS  Google Scholar 

  23. Lifton, R.P. Molecular genetics of human blood pressure variation. Science 272, 666–680 (1996).

    Article  Google Scholar 

  24. Hwang, L. et al. Downregulation of neutral endopeptidase (EC 3.4.24.11) in the inflamed rat intestine. Am. J. Physiol. 264, G735–G743 (1993).

    CAS  PubMed  Google Scholar 

  25. Borson, D.B. et al. Neutral endopeptidase and neurogenic inflammation in rats with respiratory infections. J. Appl. Physiol. 66, 2653–2658 (1989).

    Article  CAS  Google Scholar 

  26. Figini, M. et al. Substance P and bradykinin stimulate plasma extravasation in the mouse gastrointestinal tract and pancreas. Am. J. Physiol. 272, G785–G793 (1997).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, B., Figini, M., Emanueli, C. et al. The control of microvascular permeability and blood pressure by neutral endopeptidase. Nat Med 3, 904–907 (1997). https://doi.org/10.1038/nm0897-904

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0897-904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing