Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

New clues to Alzheimer's disease: Unraveling the roles of amyloid and tau

Defining the molecular pathways of Alzheimer's disease raises new possibilities for treatment (pages 864–875).

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760 (1995).

    Article  CAS  Google Scholar 

  2. Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973–977 (1995).

    Article  CAS  Google Scholar 

  3. Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med. 2, 864–870 (1996).

    Article  CAS  Google Scholar 

  4. Jarrett, J.T. & Lansbury, P.T. Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993).

    Article  CAS  Google Scholar 

  5. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  Google Scholar 

  6. Suzuki, N. et al. An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 264, 1336–1340 (1994).

    Article  CAS  Google Scholar 

  7. Citron, M. et al. Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increases β-protein production. Nature 360, 672–674 (1992).

    Article  CAS  Google Scholar 

  8. Cai, X.-D., Golde, T.E. & Younkin, G.S. Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 259, 514–516 (1993).

    Article  CAS  Google Scholar 

  9. Martins, R.N. et al. High levels of amyloid-β protein from S182 (Glu246) familial Alzheimer's cells. Neuroreport 7, 217–220 (1995).

    Article  CAS  Google Scholar 

  10. Yankner, B.A., Duffy, L.K. & Kirschner, D.A. Neurotrophic and neurotoxic effects of amyloid β protein: Reversal by tachykinin neuropeptides. Science 250, 279–282 (1990).

    Article  CAS  Google Scholar 

  11. Pike, C.J., Burdick, D., Walencewicz, A.J., Glabe, C.G. & Cotman, C.W. Neurodegeneration induced by β-amyloid peptides in vitro: The role of peptide assembly state. J. Neurosci. 13, 1676–1687 (1993).

    Article  CAS  Google Scholar 

  12. Lorenzo, A. & Yankner, B.A. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc. Natl. Acad. Sci. USA 91, 12243–12247 (1994).

    Article  CAS  Google Scholar 

  13. Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527 (1995).

    Article  CAS  Google Scholar 

  14. Mattson, M.P. et al. Evidence for excitoprotective and interneuronal calcium-regulating roles for secreted forms of the β-amyloid precursor protein. Neuron 10, 243–254 (1993).

    Article  CAS  Google Scholar 

  15. Yamatsuji, T. et al. G protein-mediated neuronal DNA fragmentation induced by familial Alzheimer's disease-associated mutants of APP. Science 272, 1349–1352 (1996).

    Article  CAS  Google Scholar 

  16. Alonso, A., Grundke-Iqbal, I. & Iqbal, K. Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nature Med. 2, 783–787 (1996).

    Article  CAS  Google Scholar 

  17. Wang, J.-Z., Grundke-Iqbal, I. & Iqbal, K. Glyco-sylation of microtubule-associated protein tau: An abnormal posttranslational modification in Alzheimer's disease. Nature Med. 2, 871–875 (1996).

    Article  CAS  Google Scholar 

  18. Biernat, J., Gustke, N., Drewes, G., Mandelkow, E.-M. & Mandelkow, E. Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: Distinction between PHF-like immunoreactivity and microtubule binding. Neuron 11, 153–163 (1993).

    Article  CAS  Google Scholar 

  19. Bramblett, G.T. et al. Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron 10, 1089–1099 (1993).

    Article  CAS  Google Scholar 

  20. Busciglio, J., Lorenzo, A., Yeh, J. & Yankner, B.A. Beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14, 879–888 (1995).

    Article  CAS  Google Scholar 

  21. Schweers, O., Mandelkow, E.-M., Biernat, J. & Mandelkow, E. Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein tau controls the in vitro assembly of paired helical filaments. Proc. Natl. Acad. Sci. USA 92, 8463–8467 (1995).

    Article  CAS  Google Scholar 

  22. Strittmatter, W.J. et al. Apolipoprotein E: High avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 1977–1981 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanker, B. New clues to Alzheimer's disease: Unraveling the roles of amyloid and tau. Nat Med 2, 850–852 (1996). https://doi.org/10.1038/nm0896-850

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0896-850

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing