Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intracellular expression of antibody fragments directed against HIV reverse transcriptase prevents HIV infection in vitro

Abstract

We have tested a novel strategy of intracellular immunization to block human immunodeficiency virus (HIV) infection. The expression of a specific antibody within a cell was achieved by transduction of genes that encode for immunoglobulin chains with specificity to viral reverse transcriptase. We demonstrated that inhibition of this enzyme makes cells resistant to HIV infection by blocking an early stage of viral replication. If high efficiency transduction with a stable vector into lymphohaematopoietic stem cells or mature lymphocytes can be achieved, gene transfer-mediated intracellular immunization might be a feasible treatment strategy in AIDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baltimore, D. Intracellular immunization. Nature 335, 395–396 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Trono, D., Feinberg, M.B. & Baltimore, D. HIV-1 Gag mutants can domi-nantly interfere with the replication of the wild-type virus. Cell 59, 113–120 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Sullenger, B.A., Gallardo, H.F., Ungers, G.E. & Gilboa, E. Overexpression of Tar sequences renders cells resistant to human immunodeficiency virus replication. Cell 63, 601–608 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Yu, M. et al. A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1. Proc. natn. Acad. Sci. U.S.A. 90, 6340–6344 (1993).

    Article  CAS  Google Scholar 

  5. Sarver, N. et al. Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247, 1222–1225 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Shimada, T.M. et al. Trial of antisense RNA inhibition of HIV replication and gene expression. Antiviral Chem. Chemother. 2, 133–142 (1991).

    Article  CAS  Google Scholar 

  7. Caruso, M. & Klatzmann, D. Selective killing of CD4+ cells harboring a human immunodeficiency virus-inducible suicide gene prevents viral spread in an infected population. Proc. natn. Acad. Sci. U.S.A. 89, 182–186 (1992).

    Article  CAS  Google Scholar 

  8. Travis, J. Putting antibodies to work inside cells. Science 261, 1114 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Carlson, J.R. A new means of inducibly inactivating a cellular protein. Molec. cell. Biol. 8, 2638–2646 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Biocca, S., Pierandrei-Amaldi, P., Campioni, N. & Cattaneo, A. Intracellular immunization with cytosolic recombinant antibodies. BioTechnology 12, 396–399 (1984).

    Article  Google Scholar 

  11. Tavladoraki, P., Benvenuto, S.T., De Martinis, D., Cattaneo, A. & Galeffi, P. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366, 469–472 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Marasco, W.A., Haseltine, W.A. & Chen, S.Y., Design, intracellular expression, and activity of a human anti-human immunodeficiency virus type 1 gp120 single-chain antibody. Proc. natn. Acad. Set U.S.A. 90, 7427–7429 (1993).

    Article  Google Scholar 

  13. Duan, L., Bagasra, O., Laughlin, M.A., Oakes, J.W. & Pomerantz, R.I. Potent inhibition of human immunodeficiency virus type 1 replication by an intracellular anti-Rev single chain antibody. Proc. natn. Acad. Sci. U.S.A. 91, 5015–5019 (1994).

    Article  Google Scholar 

  14. Mullinax, R.L. et al. Identification of human antibody fragment clones specific for tetanus toxoid in a bacteriophage lambda immunoexpression library. Proc. natn. Acad. Sci. U.S.A. 87, 8095–8099 (1990).

    Article  CAS  Google Scholar 

  15. Huse, W.D. et al. Generation of a large combinational library of the immunoglobulin repertoire in phage lambda. Science 246, 1275–1281 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Pluckthun, A. Antibody engineering: Advances from the use of Escherichia coli expression systems. BioTechnology 9, 545–551 (1991).

    CAS  PubMed  Google Scholar 

  17. DiMarzo Veronese, F. et al. Characterization of highly immunogenic p55/p66 as the reverse transcriptase of HTLV-III/LAV. Science 231, 1289–1291 (1976).

    Article  Google Scholar 

  18. Yates, J., Warren, N. & Sugden, B. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313, 812–815 (1985).

    Article  CAS  PubMed  Google Scholar 

  19. Hambor, J.E. et al. Use of an Epstein-Barr virus episomal replicon for anti-sense RNA-mediated gene inhibition in a human cytotoxic T-cell clone. Proc. natn. Acad. Sci. U.S.A. 85, 4010–4014 (1988).

    Article  CAS  Google Scholar 

  20. Young, J.M. et al. Utilization of Epstein-Barr virus replicon as a eukaryotic expression vector. Gene 62, 171–185 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Groger, R.K., Morrow, D.M. & Tykocinski, M.L. Directional antisense and sense cloning using Epstein-Barr virus episomal expression vectors. Gene 81, 285–294 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Karin, M. et al. Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene. Nature 308, 513–519 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. Pauwels, R. et al. Rapid and automated tetrazolium-based assay for the detection of anti-HIV compounds. J. virol Meth. 20, 309–321 (1988).

    Article  CAS  Google Scholar 

  24. Gerna, G. et al. Effect of Foscarnet induction treatment on the quantitation of human cytomegalovirus (HCMV) DNA in peripheral blood polymor-phonuclear leucocytes and aqueous humor of AIDS patients with HCMV re-tinitis. Antimicrob. Agents Chemother. 38, 38–44 (1984).

    Article  Google Scholar 

  25. Ou, C.-Y. et al. DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science 239, 295–297 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Lori, F. et al. Viral DNA carried by human immunodeficiency virus type 1 virions. J. Virol. 66, 5067–5074 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cara, A., Guarnaccia, F., Reitz, M.S., Gallo, R.C. & Lori, F. Self limiting, cell type dependent replication of an integrase-defective HIV-1 in primary macrophages, but not T-lymphocytes. Virology 208, 242–248 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Zack, J.A. et al. HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile latent viral structure. Cell 61, 213–222 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Bukrinsky, D. et al. Active nuclear transport of human immunodeficiency virus type 1 preintegration complexes. Proc. natn. Acad. Sci. U.S.A. 89, 6580–6584 (1992).

    Article  CAS  Google Scholar 

  30. Peng, L. et al. Initiation of reverse transcription during cell-to-cell transmission of human immunodeficiency virus infection uses pre-existing reverse transcriptase. J. gen. Virol 75, 1917–1926 (1994)

    Article  Google Scholar 

  31. Withlow, M. & Filpula, D., Fv proteins and their fusion proteins. Meth. Enzym. 2, 97–105 (1991).

    Article  Google Scholar 

  32. Huston, J.S. et al. Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Es-cherichia coli . Proc. natn. Acad. Sci. U.S.A. 85, 5879–5883 (1988).

    Article  CAS  Google Scholar 

  33. Tai, M.-S. et al. A bifunctional fusion protein containing Fc-binding Fragment of staphylococcal protein A amino terminal to antidigoxin single-chain Fv. Biochemistry 29, 8024–8030 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Gilboa, E., Eglitis, M.A., Kantoff, P.W. & Anderson, F. Transfer and expression of cloned genes using retroviral vectors. BioTechniques 4, 584–512 (1986).

    Google Scholar 

  35. Tratschin, J.-D., Miller, I.L., Smith, M.G. & Carter, B.J. Adeno-associated virus vector for high-frequency integration, expression and rescue of genes in mammalian cells. Molec. cell. Biol. 5, 3251–3260, (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Woffendin, C. et al. Nonviral and viral delivery of a human immunodeficiency virus protective gene into primary human T cells. Proc. natn. Acad. Sci. U.S.A. 91, 11581–11585 (1994).

    Article  CAS  Google Scholar 

  37. Muro-Cacho, C.A., Samulski, R-J. & Kaplan, D. Gene transfer in human lymphocytes using a vector based on adeno-associated virus. J. Immunother. 11, 231–237 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Dunbar, C.E. & Emmons, R.V.B. Gene transfer into hematopoietic progenitor and stem cells: Progress and problems. Stem Cells 12, 563–576 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Dunbar, C.E. et al. Retrovirally-marked CD34-enriched blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood (in the press).

  40. Brenner, M.K. et al. Gene-marking to trace origin of after autologous bone marrow transplantation. Lancet 341, 85–90 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Talbott, R., Krous, G., Looney, D. & Wong-Staal, F. Mapping the determinants of human immunodeficiency virus-2 for infectivity, replication efficiency, and cytopathicity. Proc. natn. Acad. Sci. U.S.A. 90, 4226–4229 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maciejewski, J., Weichold, F., Young, N. et al. Intracellular expression of antibody fragments directed against HIV reverse transcriptase prevents HIV infection in vitro. Nat Med 1, 667–673 (1995). https://doi.org/10.1038/nm0795-667

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0795-667

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing