Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tagging ribozyme reaction sites to follow trans–splicing in mammalian cells

Abstract

In mammalian cells, genetic instructions are usually revised by RNA splicing before they are translated to proteins. Here we demonstrate that a trans–splicing group I ribozyme can be employed to intentionally modify the sequence of targeted transcripts in tissue culture cells. By analyzing the ribozyme reaction products, we demonstrate that targeted trans–splicing can proceed in murine fibroblasts with high fidelity, providing direct evidence that ribozymes function as anticipated in a therapeutically relevant setting. Tram–splicing is not very specific however, and the ribozyme reacted with and tagged a variety of cellular transcripts with its 3 exon sequence. RNA tagging provides a unique approach to study RNA catalysis in mammalian cells. Such analysis should facilitate the logical development of safe, therapeutic ribozymes that can repair mutant RNAs associated with a variety of inherited diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cech, T.R. Self-splicing of group I introns. Annu. Rev. Biochem. 59, 543–568 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Zaug, A.J., Been, M.D. & Cech, T.R. The Tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature 324, 429–433 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Uhlenbeck, O.C. A small catalytic oligoribonucleotide. Nature 328, 596–600 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Haseloff, J. & Gerlach, W.L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334, 585–591 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Feldstein, P.A., Buzayan, J.M. & Bruening, G. Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene 2, 53–61 (1989).

    Article  Google Scholar 

  6. Hampel, A., Tritz, R., Hicks, M. & Cruz, P. ‘Hairpin’catalytic RNA model: Evidence for helices and sequence requirement for substrate RNA. Nucleic Acids Res. 18, 299–304 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chowrira, B.M. & Burke, J.M. Binding and cleavage of nucleic acids by the hairpin ribozyme. Biochemistry 30, 8518–8522 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Forester, A.C. & Altman, S. External guide sequence for an RNA enzyme. Science 249, 783–786 (1990).

    Article  Google Scholar 

  9. Perrotta, A.T. & Been, M.D. Cleavage of oligoribonucleotides by a ribozyme derived from the hepatitis delta virus RNA sequence. Biochemistry 31, 16–21 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Sullenger, B.A. & Cech, T.R. Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature 371, 619–622 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Cech, T.R. Ribozymes and their medical implications. J. Am. Med. Assoc. 260, 3030–3034 (1988).

    Article  CAS  Google Scholar 

  12. Rossi, J.J. Ribozymes. Curr. Opin. Biotechnol. 3, 3–7 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Yu, M., Poeschla, E. & Wong-Staal, F. Progress towards gene therapy for HIV infection. Gene Ther. 1, 13–26 (1994).

    CAS  PubMed  Google Scholar 

  14. Sullenger, B.A. Revising messages traveling along the cellular information superhighway. Chem. Biol. 2, 249–253 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Inoue, T., Sullivan, F.X. & Cech, T.R. Intermolecular exon ligation of the rRNA precursor of Tetrahymena: Oligonucleotides can function as 5′ exons. Cell 43, 431–437 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Been, M.D. & Cech, T.R. One binding site determines sequence specificity of Tetrahymena pre-rRNA self-splicing, trans-splicing, and RNA enzyme activity. Cell 47, 207–216 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Elroy-Stein, O. & Moss, B. Cytoplasmic expression system based on constitutive synthesis of bacteriophage T7 RNA polymerase in mammalian cells. Proc. Natl. Acad. Sci. USA 87, 6743–6747 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zaug, A.J., Grosshans, C.A. & Cech, T.R. Sequence-specific endoribonuclease activity of the Tetrahymena ribozyme: Enhanced cleavage of certain oligonucleotide substrates that form mismatched ribozyme-substrate complexes. Biochemistry 27, 8924–8931 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Yams, M. A specific amino acid binding site composed of RNA. Science 240, 1751–1758 (1988).

    Article  Google Scholar 

  20. Yarus, M. Specificity of arginine binding by the Tetrahymena intron. Biochemistry 28, 980–995 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Frohman, M.A. RACE: Rapid amplification of cDNA ends. in PCR Protocols: A Guide to Methods and Applications (eds.Innis, M.A., Gelfand, D.H., Sninsky, J J. & White, T.J.) 28–38 (Academic Press, San Diego, 1990).

    Google Scholar 

  22. Hantzopoulos, P.A., Sullenger, B.A., Ungers, G. & Gilboa, E. Improved gene expression upon transfer of the adenosine deaminase minigene outside the transcription unit of a retroviral vector. Proc. Natl. Acad. Sci. USA 86, 3519–3523 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kramer, A., Mulhauser, F., Wersig, C., Groning, K. & Bilbe, G. Mammalian splicing factor SF3al20 represents a new member of the SURP family of proteins and is homologous to the essential splicing factor PRP21p of S. cerevisiae. RNA 1, 260–272 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Young, B., Herschlag, D. & Cech, T.R. Mutations in a nonconserved sequence of the Tetrahymena ribozyme increase activity and specificity. Cell 67, 1007–1019 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Pyle, A.M., Murphy, F.L. & Cech, T.R. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature 358, 123–128 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Sullenger, B.A. & Cech, T.R. Tethering ribozymes to a retroviral packaging signal for destruction of viral RNA. Science 262, 1566–1569 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Feramisco, J.R., Smart, J.E., Burridge, K., Helfman, D.M. & Thomas, G.P. Co-existence of vinculin and a vinculin-like protein of higher molecular weight in smooth muscle. J. Biol. Chem. 257, 11024–11031 (1982).

    CAS  PubMed  Google Scholar 

  28. Armatano, D. et al. Effect of internal viral sequences on the utility of retroviral vectors. J. Virol. 61, 1647–1650 (1987).

    Google Scholar 

  29. Cullen, B.R. Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 46, 973–982 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Simonsen, C.C. & Levinson, A.D. Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc. Natl. Acad. Sci. USA 80, 2495–2499 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sullenger, B.A., Lee, T.C., Smith, C.A., Ungers, G.E. & Gilboa, E. Expression of chimeric tRNA-driven antisense transcripts renders N1H 3T3 cells highly resistant to Moloney murine leukemia virus replication. Mol. Cell. Biol. 10, 6512–6523 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murphy, F.L. & Cech, T.R. Alteration of substrate specificity for the endoribonucleolytic cleavage of RNA by the Tetrahymena ribozyme. Proc. Natl. Acad. Sci. USA 86, 9218–9222 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, J., Lee, SW. & Sullenger, B. Tagging ribozyme reaction sites to follow trans–splicing in mammalian cells. Nat Med 2, 643–648 (1996). https://doi.org/10.1038/nm0696-643

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0696-643

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing